1,598 research outputs found

    Theory of the Stark Effect for P donors in Si

    Full text link
    We develop a multi-valley effective mass theory for substitutional donors in silicon in an inhomogeneous environment. Valley-orbit coupling is treated perturbatively. We apply the theory to the Stark effect in Si:P. The method becomes more accurate at high fields, and it is designed to give correct experimental binding energies at zero field. Unexpectedly, the ground state energy for the donor electron is found to increase with electric field as a consequence of spectrum narrowing of the 1s manifold. Our results are of particular importance for the Kane quantum computer.Comment: published versio

    Absorption spectrum in the wings of the potassium second resonance doublet broadened by helium

    Full text link
    We have measured the reduced absorption coefficients occurring in the wings of the potassium 4S-5P doublet lines at 404.414 nm and at 404.720 nm broadened by helium gas at pressures of several hundred Torr. At the experimental temperature of 900 K, we have detected a shoulder-like broadening feature on the blue wing of the doublet which is relatively flat between 401.8 nm and 402.8 nm and which drops off rapidly for shorter wavelengths, corresponding to absorption from the X doublet Sigma+ state to the C doublet Sigma+ state of the K-He quasimolecule. The accurate measurements of the line profiles in the present work will sharply constrain future calculations of potential energy surfaces and transition dipole moments correlating to the asymptotes He-K(5p), He-K(5s), and He-K(3d).Comment: 2 figure

    Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    Get PDF
    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets

    Cardiac Cell Therapy: Insights into the Mechanisms of Tissue Repair

    Get PDF
    Stem cell-based cardiac therapies have been extensively studied in recent years. However, the efficacy of cell delivery, engraftment, and differentiation post-transplant remain continuous challenges and represent opportunities to further refine our current strategies. Despite limited long-term cardiac retention, stem cell treatment leads to sustained cardiac benefit following myocardial infarction (MI). This review summarizes the current knowledge on stem cell based cardiac immunomodulation by highlighting the cellular and molecular mechanisms of different immune responses to mesenchymal stem cells (MSCs) and their secretory factors. This review also addresses the clinical evidence in the field
    corecore