29,454 research outputs found
Experimental studies on the tripping behavior of narrow T-stiffened flat plates subjected to hydrostatic pressure and underwater shock
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior
Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia
© Author(s) 2015. This is an Open Access article made available under the terms of the Creative Commons Attribution License 3.0 https://creativecommons.org/licenses/by/3.0/We use five years (2009-2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (> 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (< 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume depending on transport time if the pollution layer traveled over China at low heights, i.e., below approximately 3 km above ground. In contrast, we do not find such a trend if the dust plumes traveled at heights above 3 km over China. We need a longer time series of lidar measurements in order to determine in a quantitative way the change of optical properties of dust with transport time.Peer reviewedFinal Published versio
Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes
© Author(s) 2019.Absorption aerosol optical depth (AAOD) as obtained from sun–sky photometer measurements provides a measure of the light-absorbing properties of the columnar aerosol loading. However, it is not an unambiguous aerosol-type-specific parameter, particularly if several types of absorbing aerosols, for instance black carbon (BC) and mineral dust, are present in a mixed aerosol plume. The contribution of mineral dust to total aerosol light absorption is particularly important at UV wavelengths. In this study we refine a lidar-based technique applied to the separation of dust and non-dust aerosol types for the use with Aerosol Robotic Network (AERONET) direct sun and inversion products. We extend the methodology to retrieve AAOD related to non-dust aerosol (AAODnd) and BC (AAODBC). We test the method at selected AERONET sites that are frequently affected by aerosol plumes that contain a mixture of Saharan or Asian mineral dust and biomass-burning smoke or anthropogenic pollution, respectively. We find that aerosol optical depth (AOD) related to mineral dust as obtained with our methodology is frequently smaller than coarse-mode AOD. This suggests that the latter is not an ideal proxy for estimating the contribution of mineral dust to mixed dust plumes. We present the results of the AAODBC retrieval for the selected AERONET sites and compare them to coincident values provided in the Copernicus Atmosphere Monitoring System aerosol reanalysis.We find that modelled and AERONET AAODBC are most consistent for Asian sites or at Saharan sites with strong local anthropogenic sources.Peer reviewe
Ultrafast nematic-orbital excitation in FeSe
The electronic nematic phase is an unconventional state of matter that
spontaneously breaks the rotational symmetry of electrons. In
iron-pnictides/chalcogenides and cuprates, the nematic ordering and
fluctuations have been suggested to have as-yet-unconfirmed roles in
superconductivity. However, most studies have been conducted in thermal
equilibrium, where the dynamical property and excitation can be masked by the
coupling with the lattice. Here we use femtosecond optical pulse to perturb the
electronic nematic order in FeSe. Through time-, energy-, momentum- and
orbital-resolved photo-emission spectroscopy, we detect the ultrafast dynamics
of electronic nematicity. In the strong-excitation regime, through the
observation of Fermi surface anisotropy, we find a quick disappearance of the
nematicity followed by a heavily-damped oscillation. This short-life nematicity
oscillation is seemingly related to the imbalance of Fe 3dxz and dyz orbitals.
These phenomena show critical behavior as a function of pump fluence. Our
real-time observations reveal the nature of the electronic nematic excitation
instantly decoupled from the underlying lattice
Observation of Conduction Band Satellite of Ni Metal by 3p-3d Resonant Inverse Photoemission Study
Resonant inverse photoemission spectra of Ni metal have been obtained across
the Ni 3 absorption edge. The intensity of Ni 3 band just above Fermi
edge shows asymmetric Fano-like resonance. Satellite structures are found at
about 2.5 and 4.2 eV above Fermi edge, which show resonant enhancement at the
absorption edge. The satellite structures are due to a many-body configuration
interaction and confirms the existence of 3 configuration in the ground
state of Ni metal.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
Localization of the relative phase via measurements
When two independently-prepared Bose-Einstein condensates are released from
their corresponding traps, the absorbtion image of the overlapping clouds
presents an interference pattern. Here we analyze a model introduced by
Javanainen and Yoo (J. Javanainen and S. M. Yoo, Phys. Rev. Lett. 76, 161
(1996)), who considered two atomic condensates described by plane waves
propagating in opposite directions. We present an analytical argument for the
measurement-induced breaking of the relative phase symmetry in this system,
demonstrating how the phase gets localized after a large enough number of
detection events.Comment: 8 pages, 1 figur
- …