25 research outputs found

    カガワケン テシマ ノ ショクセイ

    Get PDF

    Developmental and pathological lymphangiogenesis: from models to human disease.

    Get PDF
    The lymphatic vascular system, the body's second vascular system present in vertebrates, has emerged in recent years as a crucial player in normal and pathological processes. It participates in the maintenance of normal tissue fluid balance, the immune functions of cellular and antigen trafficking and absorption of fatty acids and lipid-soluble vitamins in the gut. Recent scientific discoveries have highlighted the role of lymphatic system in a number of pathologic conditions, including lymphedema, inflammatory diseases, and tumor metastasis. Development of genetically modified animal models, identification of lymphatic endothelial specific markers and regulators coupled with technological advances such as high-resolution imaging and genome-wide approaches have been instrumental in understanding the major steps controlling growth and remodeling of lymphatic vessels. This review highlights the recent insights and developments in the field of lymphatic vascular biology

    Soluble ST2 suppresses the effect of interleukin-33 on lung type 2 innate lymphoid cells

    Get PDF
    Type 2 innate lymphoid cells (ILC2) in lungs produce interleukin (IL)-5 and IL-13 in response to IL-33 and may contribute to the development of allergic diseases such as asthma. However, little is known about negative regulators and effective inhibitors controlling ILC2 function. Here, we show that soluble ST2, a member of the IL-1 receptor family, suppresses the effect of IL-33 on lung ILC2 in vitro. Stimulation with IL-33 to naïve ILC2 induced morphological change and promoted cell proliferation. In addition, IL-33 upregulated expression of cell surface molecules including IL-33 receptor and induced production of IL-5 and IL-13, but not IL-4. Pretreatment with soluble ST2 suppressed IL-33-mediated responses of ILC2. The results suggest that soluble ST2 acts as a decoy receptor for IL-33 and protects ILC2 from IL-33 stimulation

    A novel splice variant of mouse interleukin-1-receptor-associated kinase-1 (IRAK-1) activates nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK).

    No full text
    Interleukin-1 (IL-1)-receptor-associated kinase (IRAK) is an indispensable signalling molecule for host-defence responses initiated by a variety of ligands that bind to members of the Toll/IL-1 receptor family. Here we report a novel splice variant of mouse IRAK-1, IRAK-1-S, which is generated by utilizing a new splicing acceptor site within exon 12. IRAK-1-S cDNA is shorter than the originally reported IRAK-1 (IRAK-1-W) cDNA by 271 nucleotides, and the subsequent frameshift causes a premature termination of translation after 23 amino acids, which are unique to the IRAK-1-S protein. To elucidate the physiological function of IRAK-1-S, we overexpressed it in 293T cells and studied the effects on the IL-1 signalling cascade. As it lacks the C-terminal region of IRAK-1-W that has been reported to contain the TRAF6 (tumour necrosis factor receptor-associated factor 6) binding domain, IRAK-1-S was unable to bind TRAF6 protein, which is a proposed downstream signalling molecule. However, IRAK-1-S overexpressed in 293T cells induced constitutive activation of nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK) independent of stimulation by IL-1, as did IRAK-1-W. To clarify the mechanism of NF-kappaB activation by IRAK-1-S in the absence of binding to TRAF6, we demonstrated that IRAK-1-S binds to IRAK-1-W through its death domain; the findings suggested that overexpressed IRAK-1-S may bind endogenous IRAK-1-W and activate TRAF6 through IRAK-1-W. These results also indicate that this novel variant may play roles in the activation of NF-kappaB and JNK by IL-1 and other ligands whose signal transduction is dependent on IRAK-1 under physiological conditions
    corecore