19,910 research outputs found
Numerical simulation of super-square patterns in Faraday waves
We report the first simulations of the Faraday instability using the full
three-dimensional Navier-Stokes equations in domains much larger than the
characteristic wavelength of the pattern. We use a massively parallel code
based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of
arbitrarily deformable phase interfaces. Simulations performed in rectangular
and cylindrical domains yield complex patterns. In particular, a
superlattice-like pattern similar to those of [Douady & Fauve, Europhys. Lett.
6, 221-226 (1988); Douady, J. Fluid Mech. 221, 383-409 (1990)] is observed. The
pattern consists of the superposition of two square superlattices. We
conjecture that such patterns are widespread if the square container is large
compared to the critical wavelength. In the cylinder, pentagonal cells near the
outer wall allow a square-wave pattern to be accommodated in the center
Deterministic Sensing Matrices in Compressive Sensing: A Survey
Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive sensing is presented. We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices. Some recent results on construction of the deterministic sensing matrices are discussed
A perturbation theory for large deviation functionals in fluctuating hydrodynamics
We study a large deviation functional of density fluctuation by analyzing
stochastic non-linear diffusion equations driven by the difference between the
densities fixed at the boundaries. By using a fundamental equality that yields
the fluctuation theorem, we first relate the large deviation functional with a
minimization problem. We then develop a perturbation method for solving the
problem. In particular, by performing an expansion with respect to the average
current, we derive the lowest order expression for the deviation from the local
equilibrium part. This expression implies that the deviation is written as the
space-time integration of the excess entropy production rate during the most
probable process of generating the fluctuation that corresponds to the argument
of the large deviation functional.Comment: 12page
An X-Ray Microlensing Test of AU-Scale Accretion Disk Structure in Q2237+0305
The innermost regions of quasars can be resolved by a gravitational-lens
{\lq}telescope{\rq} on scales down to a few AU. For the purpose, X-ray
observations are most preferable, because X-rays originating from the innermost
regions, can be selectively amplified by microlensing due to the so-called
`caustic crossing'. If detected, X-ray variations will constrain the size of
the X-ray emitting region down to a few AU. The maximum attainable resolution
depends mainly on the monitoring intervals of lens events, which should be much
shorter than the crossing time. On the basis of this idea, we performe
numerical simulations of microlensing of an optically-thick, standard-type disk
as well as an optically-thin, advection-dominated accretion flow (ADAF).
Calculated spectral variations and light curves show distinct behaviors,
depending on the photon energy. X-ray radiation which is produced in optically
thin region, exhibits intensity variation over a few tens of days. In contrast,
optical-UV fluxes, which are likely to come from optically thick region,
exhibit more gradual light changes, which is consistent with the microlensing
events so far observed in Q2237+0305.
Currently, Q2237+0305 is being monitored in the optical range at Apache Point
Observatory. Simultaneous multi-wavelength observations by X-ray sattelites
(e.g., ASCA, AXAF, XMM) as well as HST at the moment of a microlens event
enable us to reveal an AU scale structure of the central accretion disk around
black hole.Comment: 10 pages LaTeX, 3 figures, accepted to ApJ Letter. e-mail:
[email protected]
When and where do you want to hide? Recommendation of location privacy preferences with local differential privacy
In recent years, it has become easy to obtain location information quite
precisely. However, the acquisition of such information has risks such as
individual identification and leakage of sensitive information, so it is
necessary to protect the privacy of location information. For this purpose,
people should know their location privacy preferences, that is, whether or not
he/she can release location information at each place and time. However, it is
not easy for each user to make such decisions and it is troublesome to set the
privacy preference at each time. Therefore, we propose a method to recommend
location privacy preferences for decision making. Comparing to existing method,
our method can improve the accuracy of recommendation by using matrix
factorization and preserve privacy strictly by local differential privacy,
whereas the existing method does not achieve formal privacy guarantee. In
addition, we found the best granularity of a location privacy preference, that
is, how to express the information in location privacy protection. To evaluate
and verify the utility of our method, we have integrated two existing datasets
to create a rich information in term of user number. From the results of the
evaluation using this dataset, we confirmed that our method can predict
location privacy preferences accurately and that it provides a suitable method
to define the location privacy preference
Energy dissipation and violation of the fluctuation-response relation in non-equilibrium Langevin systems
The fluctuation-response relation is a fundamental relation that is
applicable to systems near equilibrium. On the other hand, when a system is
driven far from equilibrium, this relation is violated in general because the
detailed-balance condition is not satisfied in nonequilibrium systems. Even in
this case, it has been found that for a class of Langevin equations, there
exists an equality between the extent of violation of the fluctuation-response
relation in the nonequilibrium steady state and the rate of energy dissipation
from the system into the environment [T. Harada and S. -i. Sasa, Phys. Rev.
Lett. 95, 130602 (2005)]. Since this equality involves only experimentally
measurable quantities, it serves as a proposition to determine experimentally
whether the system can be described by a Langevin equation. Furthermore, the
contribution of each degree of freedom to the rate of energy dissipation can be
determined based on this equality. In this paper, we present a comprehensive
description on this equality, and provide a detailed derivation for various
types of models including many-body systems, Brownian motor models,
time-dependent systems, and systems with multiple heat reservoirs.Comment: 18 pages, submitted to Phys. Rev.
Diagnostic errors in paediatric cardiac intensive care
AbstractIntroductionDiagnostic errors cause significant patient harm and increase costs. Data characterising such errors in the paediatric cardiac intensive care population are limited. We sought to understand the perceived frequency and types of diagnostic errors in the paediatric cardiac ICU.MethodsPaediatric cardiac ICU practitioners including attending and trainee physicians, nurse practitioners, physician assistants, and registered nurses at three North American tertiary cardiac centres were surveyed between October 2014 and January 2015.ResultsThe response rate was 46% (N=200). Most respondents (81%) perceived that diagnostic errors harm patients more than five times per year. More than half (65%) reported that errors permanently harm patients, and up to 18% perceived that diagnostic errors contributed to death or severe permanent harm more than five times per year. Medication side effects and psychiatric conditions were thought to be most commonly misdiagnosed. Physician groups also ranked pulmonary overcirculation and viral illness to be commonly misdiagnosed as bacterial illness. Inadequate care coordination, data assessment, and high clinician workload were cited as contributory factors. Delayed diagnostic studies and interventions related to the severity of the patientâs condition were thought to be the most commonly reported process breakdowns. All surveyed groups ranked improving teamwork and feedback pathways as strategies to explore for preventing future diagnostic errors.ConclusionsPaediatric cardiac intensive care practitioners perceive that diagnostic errors causing permanent harm are common and associated more with systematic and process breakdowns than with cognitive limitations.</jats:sec
Exploring the Thermodynamics of a Universal Fermi Gas
From sand piles to electrons in metals, one of the greatest challenges in
modern physics is to understand the behavior of an ensemble of strongly
interacting particles. A class of quantum many-body systems such as neutron
matter and cold Fermi gases share the same universal thermodynamic properties
when interactions reach the maximum effective value allowed by quantum
mechanics, the so-called unitary limit [1,2]. It is then possible to simulate
some astrophysical phenomena inside the highly controlled environment of an
atomic physics laboratory. Previous work on the thermodynamics of a
two-component Fermi gas led to thermodynamic quantities averaged over the trap
[3-5], making it difficult to compare with many-body theories developed for
uniform gases. Here we develop a general method that provides for the first
time the equation of state of a uniform gas, as well as a detailed comparison
with existing theories [6,14]. The precision of our equation of state leads to
new physical insights on the unitary gas. For the unpolarized gas, we prove
that the low-temperature thermodynamics of the strongly interacting normal
phase is well described by Fermi liquid theory and we localize the superfluid
transition. For a spin-polarized system, our equation of state at zero
temperature has a 2% accuracy and it extends the work of [15] on the phase
diagram to a new regime of precision. We show in particular that, despite
strong correlations, the normal phase behaves as a mixture of two ideal gases:
a Fermi gas of bare majority atoms and a non-interacting gas of dressed
quasi-particles, the fermionic polarons [10,16-18].Comment: 8 pages, 5 figure
- âŠ