18,652 research outputs found

    An Authentication Protocol for Future Sensor Networks

    Full text link
    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.Comment: This article is accepted for the publication in "Sensors" journal. 29 pages, 15 figure

    Initial Parton Distribution just after Heavy Ion Collisions

    Get PDF
    We study the initial distribution of a parton system which is formed just after relativistic heavy ion collision by the elastic scattering among the constituent partons in details and analyze the baryon and strangeness contents of the primary parton system. We present the rapidity and energy distributions of the system.Comment: 17 page

    Continuous Authentication for Voice Assistants

    Full text link
    Voice has become an increasingly popular User Interaction (UI) channel, mainly contributing to the ongoing trend of wearables, smart vehicles, and home automation systems. Voice assistants such as Siri, Google Now and Cortana, have become our everyday fixtures, especially in scenarios where touch interfaces are inconvenient or even dangerous to use, such as driving or exercising. Nevertheless, the open nature of the voice channel makes voice assistants difficult to secure and exposed to various attacks as demonstrated by security researchers. In this paper, we present VAuth, the first system that provides continuous and usable authentication for voice assistants. We design VAuth to fit in various widely-adopted wearable devices, such as eyeglasses, earphones/buds and necklaces, where it collects the body-surface vibrations of the user and matches it with the speech signal received by the voice assistant's microphone. VAuth guarantees that the voice assistant executes only the commands that originate from the voice of the owner. We have evaluated VAuth with 18 users and 30 voice commands and find it to achieve an almost perfect matching accuracy with less than 0.1% false positive rate, regardless of VAuth's position on the body and the user's language, accent or mobility. VAuth successfully thwarts different practical attacks, such as replayed attacks, mangled voice attacks, or impersonation attacks. It also has low energy and latency overheads and is compatible with most existing voice assistants

    Effective Caching for the Secure Content Distribution in Information-Centric Networking

    Full text link
    The secure distribution of protected content requires consumer authentication and involves the conventional method of end-to-end encryption. However, in information-centric networking (ICN) the end-to-end encryption makes the content caching ineffective since encrypted content stored in a cache is useless for any consumer except those who know the encryption key. For effective caching of encrypted content in ICN, we propose a novel scheme, called the Secure Distribution of Protected Content (SDPC). SDPC ensures that only authenticated consumers can access the content. The SDPC is a lightweight authentication and key distribution protocol; it allows consumer nodes to verify the originality of the published article by using a symmetric key encryption. The security of the SDPC was proved with BAN logic and Scyther tool verification.Comment: 7 pages, 9 figures, 2018 IEEE 87th Vehicular Technology Conference (VTC Spring
    corecore