202 research outputs found

    The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties

    No full text
    BACKGROUND The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties. RESULTS The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes. CONCLUSIONS The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi.This research is supported by High Impact Research Grant UM.C/625/1/HIR/ MoE/E20040-20001 from the University of Malaya/Ministry of Education, Malaysia. H-YYY is supported by the postgraduate research grant (PPP) PV024/ 2012A from University of Malaya, Malaysia. Y-HC is a recipient of Australian Research Council Discovery Early Career Researcher Award (ARC DECRA)

    The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties

    Get PDF
    BACKGROUND: The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties. RESULTS: The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes. CONCLUSIONS: The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-635) contains supplementary material, which is available to authorized users

    Wastes exist in library services

    Get PDF
    Lean is a philosophy that deals with the waste that exists in between the customers and service providers.Due to its importance, it is highly critical that the study on this field at UUM library is conducted. Referring to the study, this article reflects critical outcomes in view of the following objectives, which are: (1) to identify the agreement level of waste in UUM library and (2) to analyze the issues regarding waste existed in library comparing across all the demographic factors.This study proceeded with the quantitative approach via a survey on 120 of UUM students.The results from the survey that analyzed by SPSS had showed significant differences on the student’ perception in view of the variable involved in the study

    Medicinska gljiva Lignosus rhinocerus svojim imunomodulacijskim učinkom i reguliranjem signalnog puta posredovanog faktorom nekroze tumora uzrokuje apoptozu i zaustavlja stanični ciklus stanica karcinoma usne šupljine ORL-204

    Get PDF
    Research background. Tiger milk mushroom (Lignosus rhinocerus) is a medicinal mushroom that is geographically distributed in the region of South China, Thailand, Malaysia, Indonesia, Philippines and Papua New Guinea. Consumption of its sclerotium has been reported to treat various ailments. However, its anticancer potential towards oral cancer cell lines is yet to be determined considering the traditional method of its consumption by biting/chewing of the sclerotium. Experimental approach. Mushroom sclerotial powder of cultivar TM02® was extracted and fractionated in a chromatographic column prior to cytotoxicity testing against a panel of human oral cancer cell lines. The capability of the identified bioactive fraction in regulating several molecules associated with its tumour necrosis factor (TNF) pathway was investigated. Results and conclusions. 2,5-Diphenyl-2H-tetrazolium bromide (MTT) proliferation assay indicated that cell lines ORL-48 (derived from gingiva), ORL-188 (derived from the tongue) and ORL-204 (derived from buccal mucosa) were inhibited by cold water extract of L. rhinocerus sclerotia and its high-molecular-mass fraction (HMM) in varying degrees with ORL-204 being most affected. Hence, the treatment of ORL-204 with HMM mushroom extract was further investigated. HMM mushroom extract induced apoptosis and G0/G1 phase cell cycle arrest through caspase-3/7 cleavage. Activities of MIP2 and COX-2 were downregulated by 0.2- and 4.6-fold respectively in the HMM mushroom extract-treated ORL-204 cells. Novelty and scientific contribution. Using ORL-204, we showed that HMM mushroom extract may act via the TNF pathway at various network sites as a potential dietary compound for cancer prevention and natural adjunct therapeutic to conventional cancer treatment.Pozadina istraživanja. Medicinska gljiva Lignosus rhinocerus rasprostranjena je na području južne Kine, Tajlanda, Malezije, Indonezije, Filipina i Papua Nove Gvineje. Sklerocij gljive koristi se za liječenje različitih oboljenja. Međutim, dosad još nije ispitan antikacerogeni učinak sklerocija ove medicinske gljive, koja se tradicionalno konzumira tako da se grize odnosno žvače, na stanice karcinoma usne šupljine. Eksperimentalni pristup. Ekstrakt praha sklerocija kultivara gljive TM02® frakcioniran je pomoću kromatografske kolone, te je zatim ispitan njegov citokosični učinak na različite stanične linije humanih karcinoma usne šupljine. Ispitana je sposobnost bioaktivne frakcije da regulira molekule koje sudjeluju u sintezi faktora nekroze tumora (TNF). Rezultati i zaključci. Ispitivanjem proliferacije stanica pomoću testa redukcije 2,5-difenil-2H-tetrazolijeva bromida (MTT) utvrđeno je da ekstrakt sklerocija L. rhinocerus dobiven hladnom vodom, i to frakcija velike molekulske mase, u različitoj mjeri inhibira rast staničnih linija ORL-48 (izoliranih iz desni), ORL-188 (izoliranih ih jezika), a ponajviše onih linije ORL-204 (izoliranih iz sluznice obraza). Stoga smo dodatno istražili učinak ekstrakta gljive velike molekulske mase na staničnu liniju ORL-204. Ektrakt je potaknuo apoptozu i zaustavio stanični ciklus u fazi G0/G1 cijepanjem kaspaze 3/7. U stanicama ORL-204 tretiranim ekstraktom gljive velike molekulske mase smanjila se aktivnost enzima MIP2 za 0,2 puta, a enzima COX-2 za 4,6 puta. Novina i znanstveni doprinos. Pomoću stanične linije ORL-204 pokazali smo da ekstrakt medicinske gljive velike molekulske mase može djelovati na sintezu faktora nekroze tumora, te se upotrijebiti kao prirodni dodatak prehrani za prevenciju razvoja karcinoma ili kao dodatak konvencionalnom liječenju karcinoma

    Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast

    Get PDF
    Background: Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system. Results: Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C15H26O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, β-elemene, β-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and α-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1H and 13C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and α-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC50 value of 3.5 ± 0.58 μg/ml while α-cadinol is less active (IC50 = 18.0 ± 3.27 μg/ml). Conclusions: This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushroomsH-YYY is supported by an Australian Awards Endeavour Research Fellowship. MJM-G received an Australian Awards Endeavour Scholarship and a Mexican CONACYT scholarship. YH-C is supported by an Australian Research Council Future Fellowship (FT160100233). This work was partially supported by Funda‑ mental Research Grant Scheme (FRGS): FP029-2014A from Ministry of Science, Technology and Innovation, Malaysia, and Postgraduate Research Grant (PPP): PG144/2014B from University of Malaya

    DNA metabarcoding unravels unknown diversity and distribution patterns of tropical freshwater invertebrates

    Get PDF
    Tropical freshwater invertebrate species are becoming extinct without being described, and effective conservation is hampered by a lack of taxonomic and distribution data. DNA metabarcoding is a promising tool for rapid biodiversity assessments that has never been applied to tropical freshwater invertebrates across large spatial and taxonomic scales. Here we use DNA metabarcoding to comprehensively assess the benthic freshwater invertebrate fauna of the Perak River basin, Malaysia. Specific objectives were to: (1) assess performance of two DNA metabarcoding protocols; (2) identify gaps in reference databases; (3) generate new data on species diversity and distribution; and (4) draw conclusions regarding the potential value of DNA metabarcoding in tropical freshwater conservation. Organisms were collected by hand and net at 34 sites and divided into small (retained in 0.5-mm but passing through 1-mm mesh) and large (retained in 1-mm mesh) fractions, and a 313-bp cytochrome c oxidase subunit I fragment amplified and sequenced using general Metazoa primers. Bioinformatic analysis resulted in 468 operational taxonomic units (~species) from 12 phyla. Only 29% of species could be assigned binominal names through matches to public sequence libraries, indicating varying levels of library completeness across Orders. Extraction of small-fraction DNA with a soil kit resulted in a significantly higher species count than with a general kit, but this was not even across taxa. Metabarcoding (amplification) success rate, estimated via comparison to morphological identifications of the large-fraction specimens, was high in most taxa analysed but low, for example, in ampullariid and viviparid gastropods. Conversely, a large proportion of species-site records for Decapoda and Bivalvia came from metabarcoding only. Species richness averaged 29 ± 16 species per site, dominated by Diptera, Annelida, and Odonata, and was particularly high in tributaries of the mountainous Titiwangsa Range. At least eight species are new records for Malaysia, including the non-natives Ferrissia fragilis (Gastropoda) and Dugesia notogaea (Platyhelminthes). Our study showed that DNA metabarcoding is generally more effective in detecting tropical freshwater invertebrate species than traditional morphological approaches, and can efficiently improve knowledge of distribution patterns and ranges of native and non-native species. However, current gaps in reference databases, particularly for bioindicator taxa, such as the Plecoptera, Ephemeroptera, and Coleoptera, need to be addressed urgently

    Identification of Cancer Cell-Line Origins Using Fluorescence Image-Based Phenomic Screening

    Get PDF
    Universal phenotyping techniques that can discriminate among various states of biological systems have great potential. We applied 557 fluorescent library compounds to NCI's 60 human cancer cell-lines (NCI-60) to generate a systematic fluorescence phenotypic profiling data. By the kinetic fluorescence intensity analysis, we successfully discriminated the organ origin of all the 60 cell-lines

    DNA metabarcoding unravels unknown diversity and distribution patterns of tropical freshwater invertebrates

    Get PDF
    Tropical freshwater invertebrate species are becoming extinct without being described, and effective conservation is hampered by a lack of taxonomic and distribution data. DNA metabarcoding is a promising tool for rapid biodiversity assessments that has never been applied to tropical freshwater invertebrates across large spatial and taxonomic scales. Here we use DNA metabarcoding to comprehensively assess the benthic freshwater invertebrate fauna of the Perak River basin, Malaysia. Specific objectives were to: (1) assess performance of two DNA metabarcoding protocols; (2) identify gaps in reference databases; (3) generate new data on species diversity and distribution; and (4) draw conclusions regarding the potential value of DNA metabarcoding in tropical freshwater conservation. Organisms were collected by hand and net at 34 sites and divided into small (retained in 0.5-mm but passing through 1-mm mesh) and large (retained in 1-mm mesh) fractions, and a 313-bp cytochrome c oxidase subunit I fragment amplified and sequenced using general Metazoa primers. Bioinformatic analysis resulted in 468 operational taxonomic units (~species) from 12 phyla. Only 29% of species could be assigned binominal names through matches to public sequence libraries, indicating varying levels of library completeness across Orders. Extraction of small-fraction DNA with a soil kit resulted in a significantly higher species count than with a general kit, but this was not even across taxa. Metabarcoding (amplification) success rate, estimated via comparison to morphological identifications of the large-fraction specimens, was high in most taxa analysed but low, for example, in ampullariid and viviparid gastropods. Conversely, a large proportion of species-site records for Decapoda and Bivalvia came from metabarcoding only. Species richness averaged 29 ± 16 species per site, dominated by Diptera, Annelida, and Odonata, and was particularly high in tributaries of the mountainous Titiwangsa Range. At least eight species are new records for Malaysia, including the non-natives Ferrissia fragilis (Gastropoda) and Dugesia notogaea (Platyhelminthes). Our study showed that DNA metabarcoding is generally more effective in detecting tropical freshwater invertebrate species than traditional morphological approaches, and can efficiently improve knowledge of distribution patterns and ranges of native and non-native species. However, current gaps in reference databases, particularly for bioindicator taxa, such as the Plecoptera, Ephemeroptera, and Coleoptera, need to be addressed urgently
    corecore