1,968 research outputs found

    Approaching the adiabatic timescale with machine-learning

    Full text link
    The control and manipulation of quantum systems without excitation is challenging, due to the complexities in fully modeling such systems accurately and the difficulties in controlling these inherently fragile systems experimentally. For example, while protocols to decompress Bose-Einstein condensates (BEC) faster than the adiabatic timescale (without excitation or loss) have been well developed theoretically, experimental implementations of these protocols have yet to reach speeds faster than the adiabatic timescale. In this work, we experimentally demonstrate an alternative approach based on a machine learning algorithm which makes progress towards this goal. The algorithm is given control of the coupled decompression and transport of a metastable helium condensate, with its performance determined after each experimental iteration by measuring the excitations of the resultant BEC. After each iteration the algorithm adjusts its internal model of the system to create an improved control output for the next iteration. Given sufficient control over the decompression, the algorithm converges to a novel solution that sets the current speed record in relation to the adiabatic timescale, beating out other experimental realizations based on theoretical approaches. This method presents a feasible approach for implementing fast state preparations or transformations in other quantum systems, without requiring a solution to a theoretical model of the system. Implications for fundamental physics and cooling are discussed.Comment: 7 pages main text, 2 pages supporting informatio

    Gravitational anomalies: a recipe for Hawking radiation

    Get PDF
    We explore the method of Robinson and Wilczek for deriving the Hawking temperature of a black hole. In this method, the Hawking radiation restores general covariance in an effective theory of near-horizon physics which otherwise exhibits a gravitational anomaly at the quantum level. The method has been shown to work for broad classes of black holes in arbitrary spacetime dimensions. These include static black holes, accreting or evaporating black holes, charged black holes, rotating black holes, and even black rings. In the case of charged and rotating black holes, the expected super-radiant current is also reproduced.Comment: 7 pages; This essay received an "Honorable Mention" in the 2007 Essay Competition of the Gravity Research Foundation; (v2) Short comments and references added; (v3) Minor revisions and updated references to agree with published versio

    Effects of Bi3+ Ion-Doped on the Microstructure and Photoluminescence of La0.97Pr0.03VO4 Phosphor

    Get PDF
    The objective of this paper is to enhance the emission intensity of La0.97Pr0.03VO4 single-phased white light emitting phosphor. The Bi3+ ion-doped La0.97Pr0.03VO4 single-phased white light emitting phosphors are synthesized using a sol-gel method. The structure and photoluminescence properties of (La0.97-yBiy)Pr0.03VO4 (y = 0-0.05) phosphor are also examined. The XRD results show that the structure of La0.97Pr0.03VO4 phosphors with different concentrations of Bi3+ ion doping keeps the monoclinic structure. The SEM results show that the phosphor particles become smoother when the Bi3+ ion is doped. The excitation band for La0.97Pr0.03VO4 phosphor exhibits a blue shift from 320 nm to 308 nm as the Bi3+ ion contents are increased. The maximum emission intensity is achieved for a Bi3+ ion content of 0.5 mol%, which is about 30% greater than that with no Bi3+ ion doped. The CIE chromaticity coordinates are all located in the near white light region for different Bi3+ ion-doped La0.97Pr0.03VO4 phosphors

    Synchrotron X-ray reflectivity studies of nanoporous organosilicate thin films with low dielectric constants

    Get PDF
    Quantitative, non-destructive X-ray reflectivity analysis using synchrotron radiation sources was successfully performed on nanoporous dielectric thin films prepared by thermal processing of blend films of a thermally curable polymethylsilsesquioxane dielectric precursor and a thermally labile triethoxy-silyl-terminated six-arm poly(epsilon-caprolactone) porogen in various compositions. In addition, thermogravimetric analysis and transmission electron microscopy analysis were carried out. These measurements provided important structural information about the nanoporous films. The thermal process used in this study was found to cause the porogen molecules to undergo efficiently sacrificial thermal degradation, generating closed, spherical nanopores in the dielectric film. The resultant nanoporous films exhibited a homogeneous, well defined structure with a thin skin layer and low surface roughness. In particular, no skin layer was formed in the porous film imprinted using a porogen loading of 30 wt%. The film porosities ranged from 0 to 33.8% over the porogen loading range of 0-30 wt%open131

    Activist directors: Determinants and consequences

    Get PDF
    Abstract This paper examines the determinants and consequences of hedge fund activism with a focus on activist directors, i.e., those directors appointed in response to demands by activists. Using a sample of 1,969 activism events over the period 2004-2012, we identify 824 activist directors. We find that activists are more likely to gain board seats at smaller firms and those with weaker stock price performance. Activists remain as shareholders longer when they have board seats, with holding periods consistent with conventional notions of "long-term" institutional investors. As in prior research, we find positive announcement-period returns of around 4-5% when a firm is targeted by activists, and a 2% increase in return on assets over the subsequent one to five years. We find that activist directors are associated with significant strategic and operational actions by firms. We find evidence of increased divestiture, decreased acquisition activity, higher probability of being acquired, lower cash balances, higher payout, greater leverage, higher CEO turnover, lower CEO compensation, and reduced investment. With the exception of the probability of being acquired, these estimated effects are generally greater when activists obtain board representation, consistent with board representation being an important mechanism for bringing about the kinds of changes that activists often demand

    Entanglement-based 3D magnetic gradiometry with an ultracold atomic scattering halo

    Get PDF
    Ultracold collisions of Bose-Einstein condensates can be used to generate a large number of counter-propagating pairs of entangled atoms, which collectively form a thin spherical shell in momentum space, called a scattering halo. Here we generate a scattering halo initially composed of pairs in a symmetric entangled state in spin, and observe a coherent oscillation with an anti-symmetric state during their separation, due to the presence of an inhomogeneous magnetic field. We demonstrate a novel method of magnetic gradiometry based on the evolution of pairwise correlation, which is insensitive to common-mode fluctuations of the magnetic field. Furthermore, the highly multimode nature and narrow radial width of scattering halos enable a 3D reconstruction of the interrogated field. Based on this, we apply Ramsey interferometry to realise a 3D spatial reconstruction of the magnetic field without the need for a scanning probe.The authors would like to thank Michael Barson, Jan Chwedeńczuk, Heyang Li, Samuel Nolan, Kieran Thomas, and Tomasz Wasak for insightful discussions. This work was supported through Australian Research Council (ARC) Discovery Project grants DP120101390, DP140101763 and DP160102337. DKS and JAR are supported by an Australian Government Research Training Program Scholarship. SSH is supported by ARC Discovery Early Career Researcher Award DE150100315

    Characterization of Proximal Small Intestinal Microbiota in Patients With Suspected Small Intestinal Bacterial Overgrowth: A Cross-Sectional Study

    Get PDF
    OBJECTIVES: The composition of the small intestinal microbiota has not yet been characterized thoroughly using culture-independent techniques. We compared small intestinal microbial communities in patients with and without small intestinal bacterial overgrowth (SIBO) using culture-dependent and culture-independent bacterial identification approaches. METHODS: Small bowel aspirate and mucosal samples were collected from patients with suspected SIBO. The aspirates were cultured to diagnose SIBO, defined as ≥10 colony-forming units/mL coliform or ≥10 colony-forming units/mL upper aerodigestive tract bacteria. Bacteria in the aspirates and mucosa were identified using 16S rRNA gene sequencing. We compared small intestinal microbiome composition between groups with and without a culture-based SIBO diagnosis. RESULTS: Analysis of the aspirate and mucosal microbial communities from 36 patients revealed decreased α-diversity but no differences in β-diversity in patients with SIBO compared with those without SIBO. There were no significant differences in the relative abundance of individual taxa from the aspirates or mucosa after adjustment for false discovery rate between patients with and without SIBO. Subgroup analysis revealed significant differences in mucosal β-diversity between the coliform and upper aerodigestive tract subgroups. Relative abundances of a mucosal Clostridium spp. (P = 0.05) and an aspirate Granulicatella spp. (P = 0.02) were higher in coliform SIBO vs non-SIBO subgroups. The microbial composition and relative abundance of multiple taxa significantly differed in the mucosal and aspirate specimens. DISCUSSION: Culture-based results of small bowel aspirates do not correspond to aspirate microbiota composition but may be associated with species richness of the mucosal microbiota

    Direct Measurement of the Forbidden 23S1 → 33S1 Atomic Transition in Helium

    Get PDF
    We present the detection of the highly forbidden 2 3S1→ 3 3S1 atomic transition in helium, the weakest transition observed in any neutral atom. Our measurements of the transition frequency, upper state lifetime, and transition strength agree well with published theoretical values and can lead to tests of both QED contributions and different QED frameworks. To measure such a weak transition, we develop two methods using ultracold metastable (2 3S1) helium atoms: low background direct detection of excited then decayed atoms for sensitive measurement of the transition frequency and lifetime, and a pulsed atom laser heating measurement for determining the transition strength. These methods could possibly be applied to other atoms, providing new tools in the search for ultraweak transitions and precision metrology.This work was supported through Australian Research Council (ARC) Discovery Project Grants No. DP160102337 and DP180101093, as well as Linkage Project No. LE180100142. K. F. T. and D. K. S. are supported by Australian Government Research Training Program (RTP) scholarships. S. S. H. is supported by ARC Discovery Early Career Researcher Award No. DE150100315
    corecore