3,258 research outputs found
The effect of phenylephrine on the onset time of rocuronium
BACKGROUND: Several studies have demonstrated that ephedrine shortens the onset time of muscle relaxants, and it does so probably by increasing the cardiac output. However, elevation of the systemic blood pressure through α adrenergic stimulation via ephedrine may affect the onset of muscle relaxants during the induction of anesthesia. We investigated the effect of phenylephrine, which is a selective α-1 agonist, on the onset time of rocuronium and the intubating conditions in adults after the administration of propofol.
METHODS: Sixty-four patients were randomly assigned to two groups. Phenylephrine (0.9 µg/kg) (P group) or the same volume of saline (S group) was injected before rocuronium (0.6 mg/kg) administration. Anesthesia was induced with fentanyl 2 µg/kg and propofol 2 mg/kg. The onset time was defined as the time from the end of rocuronium injection to the time when a single twitch height gets to 0% or the minimum level. A well-trained anesthesiologist who was 'blinded' to the treatment groups evaluated the intubating conditions. The mean arterial pressure and heart rate were recorded before induction, before intubation, immediately after intubation and 1 minute and 2 minutes after intubation.
RESULTS: The onset time was 84 ± 18 sec in the P-group and 72 ± 14 sec in the S-group. There was no difference of the intubating conditions, the mean arterial pressure and the heart rate between the two groups.
CONCLUSIONS: A small dose of phenylephrine, which has a limited effect on blood pressure, delayed the onset time of rocuronium after the administration of propofol, and the vasoconstriction effect of phenylephrine may affect the prolongation of the rocuronium onset time at the induction of anesthesia with using propofol.ope
Pseudo-Differential Neural Operator: Generalized Fourier Neural Operator for Learning Solution Operators of Partial Differential Equations
Learning the mapping between two function spaces has garnered considerable
research attention. However, learning the solution operator of partial
differential equations (PDEs) remains a challenge in scientific computing.
Fourier neural operator (FNO) was recently proposed to learn solution
operators, and it achieved an excellent performance. In this study, we propose
a novel \textit{pseudo-differential integral operator} (PDIO) to analyze and
generalize the Fourier integral operator in FNO. PDIO is inspired by a
pseudo-differential operator, which is a generalized differential operator
characterized by a certain symbol. We parameterize this symbol using a neural
network and demonstrate that the neural network-based symbol is contained in a
smooth symbol class. Subsequently, we verify that the PDIO is a bounded linear
operator, and thus is continuous in the Sobolev space. We combine the PDIO with
the neural operator to develop a \textit{pseudo-differential neural operator}
(PDNO) and learn the nonlinear solution operator of PDEs. We experimentally
validate the effectiveness of the proposed model by utilizing Darcy flow and
the Navier-Stokes equation. The obtained results indicate that the proposed
PDNO outperforms the existing neural operator approaches in most experiments.Comment: 23 pages, 13 figure
Advancements in the treatment of pediatric acute leukemia and brain tumor - continuous efforts for 100% cure
Treatment outcomes of pediatric cancers have improved greatly with the development of improved treatment protocols, new drugs, and better supportive measures, resulting in overall survival rates greater than 70%. Survival rates are highest in acute lymphoblastic leukemia, reaching more than 90%, owing to risk-based treatment through multicenter clinical trials and protocols developed to prevent central nervous system relapse and testicular relapse in boys. New drugs including clofarabine and nelarabine are currently being evaluated in clinical trials, and other targeted agents are continuously being developed. Chimeric antigen receptor-modified T cells are now attracting interest for the treatment of recurrent or refractory disease. Stem cell transplantation is still the most effective treatment for pediatric acute myeloid leukemia (AML). However, in order to reduce treatment-related death after stem cell transplantation, there is need for improved treatments. New drugs and targeted agents are also needed for improved outcome of AML. Surgery and radiation therapy have been the mainstay for brain tumor treatment. However, chemotherapy is becoming more important for patients who are not eligible for radiotherapy owing to age. Stem cell transplant as a means of high dose chemotherapy and stem cell rescue is a new treatment modality and is often repeated for improved survival. Drugs such as temozolomide are new chemotherapeutic options. In order to achieve 100% cure in children with pediatric cancer, every possible treatment modality and effort should be considered
Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities
Objectives Cohort studies of associations between air pollution and health have used exposure prediction approaches to estimate individual-level concentrations. A common prediction method used in Korean cohort studies is ordinary kriging. In this study, performance of ordinary kriging models for long-term particulate matter less than or equal to 10 μm in diameter (PM10) concentrations in seven major Korean cities was investigated with a focus on spatial prediction ability. Methods We obtained hourly PM10 data for 2010 at 226 urban-ambient monitoring sites in South Korea and computed annual average PM10 concentrations at each site. Given the annual averages, we developed ordinary kriging prediction models for each of the seven major cities and for the entire country by using an exponential covariance reference model and a maximum likelihood estimation method. For model evaluation, cross-validation was performed and mean square error and R-squared (R2) statistics were computed. Results Mean annual average PM10 concentrations in the seven major cities ranged between 45.5 and 66.0 μg/m3 (standard deviation=2.40 and 9.51 μg/m3, respectively). Cross-validated R2 values in Seoul and Busan were 0.31 and 0.23, respectively, whereas the other five cities had R2 values of zero. The national model produced a higher crossvalidated R2 (0.36) than those for the city-specific models. Conclusions In general, the ordinary kriging models performed poorly for the seven major cities and the entire country of South Korea, but the model performance was better in the national model. To improve model performance, future studies should examine different prediction approaches that incorporate PM10 source characteristics
The Prevalence of Hepatitis C Virus Infection in Korea: Pooled Analysis
This study evaluated the prevalence of hepatitis C virus (HCV) infections in Korea. Pooled estimates of the anti-HCV positivity were calculated using the data published in 15 reports on the general population and health check-up examinees. The overall pooled estimate of the prevalence of HCV among middle-aged adults (40 yr old and above) was 1.68% (95% confidence interval: 1.51-1.86%) during the year of 1990-2000 among the general population. Most of the published data indicated that the prevalence of anti-HCV increased with age. The anti-HCV positivity was significantly higher in females than in males. Because the risk of HCV exposure in blood recipients has decreased remarkably, the spread of HCV through means other than a transfusion must be prevented
Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice
Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. The in vitro study elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20 μM suppressed the LPS-induced IL-8 production through the TLR4 activation, inhibiting eotaxin-1 induction. The in vivo study explored the demoting effects of kaempferol on asthmatic inflammation in BALB/c mice sensitized with ovalbumin (OVA). Mouse macrophage inflammatory protein-2 production and CXCR2 expression were upregulated in OVA-challenged mice, which was attenuated by oral administration of ≥10 mg/kg kaempferol. Kaempferol allayed the airway tissue levels of eotaxin-1 and eotaxin receptor CCR3 enhanced by OVA challenge. This study further explored the blockade of Tyk-STAT signaling by kaempferol in both LPS-stimulated BEAS-2B cells and OVA-challenged mice. LPS activated Tyk2 responsible for eotaxin-1 induction, while kaempferol dose-dependently inhibited LPS- or IL-8-inflamed Tyk2 activation. Similar inhibition of Tyk2 activation by kaempferol was observed in OVA-induced mice. Additionally, LPS stimulated the activation of STAT1/3 signaling concomitant with downregulated expression of Tyk-inhibiting SOCS3. In contrast, kaempferol encumbered STAT1/3 signaling with restoration of SOCS3 expression. Consistently, oral administration of kaempferol blocked STAT3 transactivation elevated by OVA challenge. These results demonstrate that kaempferol alleviated airway inflammation through modulating Tyk2-STAT1/3 signaling responsive to IL-8 in endotoxin-exposed airway epithelium and in asthmatic mice. Therefore, kaempferol may be a therapeutic agent targeting asthmatic diseases
- …