660 research outputs found

    New fitting formula for cosmic non-linear density distribution

    Full text link
    We have measured the probability distribution function (PDF) of cosmic matter density field from a suite of N-body simulations. We propose the generalized normal distribution of version 2 (Nv2) as an alternative fitting formula to the well-known log-normal distribution. We find that Nv2 provides significantly better fit than the log-normal distribution for all smoothing radii (2, 5, 10, 25 [Mpc/h]) that we studied. The improvement is substantial in the underdense regions. The development of non- Gaissianities in the cosmic matter density field is captured by continuous evolution of the skewness and shifts parameters of the Nv2 distribution. We present the redshift evolution of these parameters for aforementioned smoothing radii and various background cosmology models. All the PDFs measured from large and high-resolution N-body simulations that we use in this study can be obtained from a Web site at https://astro.kias.re.kr/jhshin.Comment: Accepted for publication in Ap

    Alternating Direction Implicit Method for Two-Dimensional Fokker-Planck Equation of Dense Spherical Stellar Systems

    Full text link
    The Fokker-Planck (FP) model is one of the commonly used methods for studies of the dynamical evolution of dense spherical stellar systems such as globular clusters and galactic nuclei. The FP model is numerically stable in most cases, but we find that it encounters numerical difficulties rather often when the effects of tidal shocks are included in two-dimensional (energy and angular momentum space) version of the FP model or when the initial condition is extreme (e.g., a very large cluster mass and a small cluster radius). To avoid such a problem, we have developed a new integration scheme for a two-dimensional FP equation by adopting an Alternating Direction Implicit (ADI) method given in the Douglas-Rachford split form. We find that our ADI method reduces the computing time by a factor of ~2 compared to the fully implicit method, and resolves problems of numerical instability.Comment: Published in J. Korean Astron. Soc., 40, 91 (2007

    Low-End Mass Function of the Arches Cluster

    Full text link
    The initial mass function (IMF) of the Arches cluster, which was formed a few million years ago in the harsh environment of the Galactic center (GC), has long been a target of interest to those who study the GC and the theory of star formation. The distinct star-forming conditions in the GC might have caused the cluster to have a shallower slope or an elevated lower mass cutoff in its IMF. But its mass function has been revealed only down to 1-2 Msun (the lower limit of resolved stars), and the low- end mass function of the Arches is still unknown. To estimate the unresolved part of the Arches mass function, we have devised a novel photometric method that involves the histogram of pixel intensities in the observed image, which contains information on the unresolved, faint stars. By comparing the pixel intensity histograms (PIHs) of numerous artificial images constructed from model IMFs with the observed PIH, we find that the best-fit model IMF for the Arches cluster has a cutoff mass less than or similar to 0.1 Msun and a shape very close to that of the Kroupa MF. Our findings imply that the IMF of the Arches cluster is similar to those found in the Galactic disk.Comment: Accepted for publication in MNRA

    Is the current AID to Latin America and the Caribbean effective to reduce income inequality?

    Get PDF
    Thesis(Master) --KDI School:Master of Development Policy,2017masterpublishedJihye SHIN

    Dynamical evolution of the mass function and radial profile of the Galactic globular cluster system

    Full text link
    Evolution of the mass function (MF) and radial distribution (RD) of the Galactic globular cluster (GC) system is calculated using an advanced and a realistic Fokker-Planck (FP) model that considers dynamical friction, disc/bulge shocks and eccentric cluster orbits. We perform hundreds of FP calculations with different initial cluster conditions, and then search a wide-parameter space for the best-fitting initial GC MF and RD that evolves into the observed present-day Galactic GC MF and RD. By allowing both MF and RD of the initial GC system to vary, which is attempted for the first time in the present Letter, we find that our best-fitting models have a higher peak mass for a lognormal initial MF and a higher cut-off mass for a power-law initial MF than previous estimates, but our initial total masses in GCs, M_{T,i} = 1.5-1.8x10^8 Msun, are comparable to previous results. Significant findings include that our best-fitting lognormal MF shifts downward by 0.35 dex during the period of 13 Gyr, and that our power-law initial MF models well-fit the observed MF and RD only when the initial MF is truncated at >~10^5 Msun. We also find that our results are insensitive to the initial distribution of orbit eccentricity and inclination, but are rather sensitive to the initial concentration of the clusters and to how the initial tidal radius is defined. If the clusters are assumed to be formed at the apocentre while filling the tidal radius there, M_{T,i} can be as high as 6.9x10^8 Msun, which amounts to ~75 per cent of the current mass in the stellar halo.Comment: To appear in May 2008 issue of MNRAS, 386, L6
    corecore