27 research outputs found

    Self-subdiffusion in solutions of star-shaped crowders: non-monotonic effects of inter-particle interactions

    Full text link
    We examine by extensive computer simulations the self-diffusion of anisotropic star like particles in crowded two-dimensional solutions. We investigate the implications of the area coverage fraction ϕ\phi of the crowders and the crowder-crowder adhesion properties on the regime of transient anomalous diffusion. We systematically compute the mean squared displacement (MSD) of the particles, their time averaged MSD, as well as the effective diffusion coefficient. The diffusion appears ergodic in the limit of long traces, such that the time averaged MSD converges towards the ensemble averaged MSD and features a small residual amplitude spread of the time averaged MSD from individual trajectories. At intermediate time scales we quantify the anomalous diffusion in the system. Also, we show that the translational---but not rotational---diffusivity of the particles DD is a non-monotonic function of the attraction strength between them. Both diffusion coefficients decrease as D(ϕ)(1ϕ/ϕ)2D(\phi)\sim (1-\phi/\phi^*)^2 with the area fraction ϕ\phi occupied by the crowders. Our results might be applicable to rationalising the experimental observations of non-Brownian diffusion for a number of standard macromolecular crowders used in vitro to mimic the cytoplasmic conditions of living cells.Comment: 16 pages, 7 figure

    Sensing viruses by mechanical tension of DNA in responsive hydrogels

    Full text link
    The rapid worldwide spread of severe viral infections, often involving novel modifications of viruses, poses major challenges to our health care systems. This means that tools that can efficiently and specifically diagnose viruses are much needed. To be relevant for a broad application in local health care centers, such tools should be relatively cheap and easy to use. Here we discuss the biophysical potential for the macroscopic detection of viruses based on the induction of a mechanical stress in a bundle of pre-stretched DNA molecules upon binding of viruses to the DNA. We show that the affinity of the DNA to the charged virus surface induces a local melting of the double-helix into two single-stranded DNA. This process effects a mechanical stress along the DNA chains leading to an overall contraction of the DNA. Our results suggest that when such DNA bundles are incorporated in a supporting matrix such as a responsive hydrogel, the presence of viruses may indeed lead to a significant, macroscopic mechanical deformation of the matrix. We discuss the biophysical basis for this effect and characterize the physical properties of the associated DNA melting transition. In particular, we reveal several scaling relations between the relevant physical parameters of the system. We promote this DNA-based assay for efficient and specific virus screening.Comment: 11 pages, 7 figures, supplementary material included in the source file

    Elasticity-based polymer sorting in active fluids: A Brownian dynamics study

    Get PDF
    While the dynamics of polymer chains in equilibrium media is well understood by now, the polymer dynamics in active non-equilibrium environments can be very different. Here we study the dynamics of polymers in a viscous medium containing self-propelled particles in two dimensions by using Brownian dynamics simulations. We find that the polymer center of mass exhibits a superdiffusive motion at short to intermediate times and the motion turns normal at long times, but with a greatly enhanced diffusivity. Interestingly, the long time diffusivity shows a non-monotonic behavior as a function of the chain length and stiffness. We analyze how the polymer conformation and the accumulation of the self-propelled particles, and therefore the directed motion of the polymer, are correlated. At the point of maximal polymer diffusivity, the polymer has preferentially bent conformations maintained by the balance between the chain elasticity and the propelling force generated by the active particles. We also consider the barrier crossing dynamics of actively-driven polymers in a double-well potential. The barrier crossing times are demonstrated to have a peculiar non-monotonic dependence, related to that of the diffusivity. This effect can be potentially utilized for sorting of polymers from solutions in \textit{in vitro} experiments.Comment: 11 pages, 7 figure

    Effects of static and temporally fluctuating tensions on semiflexible polymer looping

    Full text link
    Biopolymer looping is a dynamic process that occurs ubiquitously in cells for gene regulation, protein folding, etc. In cellular environments, biopolymers are often subject to tensions which are either static, or temporally fluctuating far away from equilibrium. We study the dynamics of semiflexible polymer looping in the presence of such tensions by using Brownian dynamics simulation combined with an analytical theory. We show a minute tension dramatically changes the looping time, especially for long chains. Considering a dichotomically flipping noise as a simple example of the nonequilibrium tension, we find the phenomenon of resonant activation, where the looping time can be the minimum at an optimal flipping time. We discuss our results in connection with recent experiments.Comment: 7 pages, 8 figures, accepted in the Journal of Chemical Physic
    corecore