220 research outputs found

    Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population

    Get PDF
    Recently, two studies provided convincing evidence that IFN regulatory factor 5 (IRF5) gene polymorphisms are significantly associated with systemic lupus erythematosus (SLE) in several white populations. To replicate the association with SLE in an Asian population, we examined the genetic effects in our SLE cohort from a Korean population. A total of 1,565 subjects, composed of 593 cases and 972 controls, were genotyped using the TaqManÂź (Applied Biosystems, Foster City, CA, USA) method. The genetic effects of polymorphisms on the risk of SLE were evaluated using χ2 tests and a Mantel–Haenszel meta-analysis. Statistical analysis revealed results in the Korean population were similar to the previous reports from white populations. The rs2004640 T allele had a higher frequency in SLE cases (0.385) than controls (0.321; odds ratio (OR) = 1.32, P = 0.0003). In combined analysis, including all seven independent cohorts from the three studies so far, robust and consistent associations of the rs2004640 T allele with SLE were observed. The estimate of risk was OR = 1.44 (range, 1.34–1.55), with an overall P = 1.85 × 10-23 for the rs2004640 T allele. The haplotype (rs2004640T–rs2280714T) involved in both the alternative splice donor site and the elevated expression of IRF5 also had a highly significant association with SLE (pooled, P = 2.11 × 10-16). Our results indicate that the genetic effect on the risk of SLE mediated by IRF5 variants can be generally accepted in both white and Asian populations

    Melatonin receptor 1 B polymorphisms associated with the risk of gestational diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Backgrounds</p> <p>Two SNPs in <it>melatonin receptor 1B </it>gene, <it>rs10830963 </it>and <it>rs1387153 </it>showed significant associations with fasting plasma glucose levels and the risk of Type 2 Diabetes Mellitus (T2DM) in previous studies. Since T2DM and gestational diabetes mellitus (GDM) share similar characteristics, we suspected that the two genetic polymorphisms in <it>MTNR1B </it>may be associated with GDM, and conducted association studies between the polymorphisms and the disease. Furthermore, we also examined genetic effects of the two polymorphisms with various diabetes-related phenotypes.</p> <p>Methods</p> <p>A total of 1,918 subjects (928 GDM patients and 990 controls) were used for the study. Two <it>MTNR1B </it>polymorphisms were genotyped using TaqMan assay. The allele distributions of SNPs were evaluated by <it>x</it><sup>2 </sup>models calculating odds ratios (ORs), 95% confidence intervals (CIs), and corresponding <it>P </it>values. Multiple regressions were used for association analyses of GDM-related traits. Finally, conditional analyses were also performed.</p> <p>Results</p> <p>We found significant associations between the two genetic variants and GDM, <it>rs10830963</it>, with a corrected <it>P </it>value of 0.0001, and <it>rs1387153</it>, with the corrected <it>P </it>value of 0.0008. In addition, we also found that the two SNPs were associated with various phenotypes such as homeostasis model assessment of beta-cell function and fasting glucose levels. Further conditional analyses results suggested that <it>rs10830963 </it>might be more likely functional in case/control analysis, although not clear in GDM-related phenotype analyses.</p> <p>Conclusion</p> <p>There have been studies that found associations between genetic variants of other genes and GDM, this is the first study that found significant associations between SNPs of <it>MTNR1B </it>and GDM. The genetic effects of two SNPs identified in this study would be helpful in understanding the insight of GDM and other diabetes-related disorders.</p

    Genetic diversity and divergence among Korean cattle breeds assessed using a BovineHD single-nucleotide polymorphism chip

    Get PDF
    Objective In Korea, there are three main cattle breeds, which are distinguished by coat color: Brown Hanwoo (BH), Brindle Hanwoo (BRH), and Jeju Black (JB). In this study, we sought to compare the genetic diversity and divergence among there Korean cattle breeds using a BovineHD chip genotyping array. Methods Sample data were collected from 168 cattle in three populations of BH (48 cattle), BRH (96 cattle), and JB (24 cattle). The single-nucleotide polymorphism (SNP) genotyping was performed using the Illumina BovineHD SNP 777K Bead chip. Results Heterozygosity, used as a measure of within-breed genetic diversity, was higher in BH (0.293) and BRH (0.296) than in JB (0.266). Linkage disequilibrium decay was more rapid in BH and BRH than in JB, reaching an average r2 value of 0.2 before 26 kb in BH and BRH, whereas the corresponding value was reached before 32 kb in JB. Intra-population, inter-population, and Fst analyses were used to identify candidate signatures of positive selection in the genome of a domestic Korean cattle population and 48, 11, and 11 loci were detected in the genomic region of the BRH breed, respectively. A Neighbor-Joining phylogenetic tree showed two main groups: a group comprising BH and BRH on one side and a group containing JB on the other. The runs of homozygosity analysis between Korean breeds indicated that the BRH and JB breeds have high inbreeding within breeds compared with BH. An analysis of differentiation based on a high-density SNP chip showed differences between Korean cattle breeds and the closeness of breeds corresponding to the geographic regions where they are evolving. Conclusion Our results indicate that although the Korean cattle breeds have common features, they also show reliable breed diversity

    Implication of Genetic Variants Near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in Type 2 Diabetes and Obesity in 6,719 Asians

    Get PDF
    OBJECTIVE— Recent genome-wide association studies have identified six novel genes for type 2 diabetes and obesity and confirmed TCF7L2 as the major type 2 diabetes gene to date in Europeans. However, the implications of these genes in Asians are unclear

    A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marbling score (MS) is the major quantitative trait that affects carcass quality in beef cattle. In this study, we examined the association between genetic polymorphisms of the micromolar calcium-activated neutral protease gene (micro-calpain, <it>CAPN1</it>) and carcass traits in Korean cattle (also known as Hanwoo).</p> <p>Results</p> <p>By direct DNA sequencing in 24 unrelated Korean cattle, we identified 39 sequence variants within exons and their flanking regions in <it>CAPN1</it>. Among them, 12 common polymorphic sites were selected for genotyping in the beef cattle (<it>n </it>= 421). Statistical analysis revealed that a polymorphism in the 3'UTR (<it>c.2151*479C>T</it>) showed significant association with MS (<it>P</it><sup><it>cor</it>. </sup>= 0.02).</p> <p>Conclusion</p> <p>Our findings suggest that polymorphisms in <it>CAPN1 </it>might be one of the important genetic factors involved in carcass quality in beef cattle, although it could be false positive association.</p

    Cox-2 and IL-10 Polymorphisms and Association with Squamous Cell Carcinoma of The Head and Neck in a Korean Sample

    Get PDF
    Cyclooxygenase-2 (COX-2) is involved in inflammation and carcinogenesis. Interleukin-10 (IL-10) is also regarded as anti-inflammatory factors with the multi-functional ability to positively and negatively influence functional immunity and tumor development. Genetic polymorphisms of COX-2 and IL-10 might contribute to the development of squamous cell carcinoma of the head and neck (SCCHN). The purpose of this study was to evaluate the association of COX-2 and IL-10 single nucleotide polymorphisms (SNPs) with the risk of SCCHN in a Korean sample. We analyzed the COX-2 SNPs, -1329A>G, +1266C>T, and +6365T>C, and the IL-10 SNPs, -1082A>G, +920T>G, and +3917T>C, in 290 Korean SCCHN patients and 358 healthy controls. There was no significant association between the risk of SCCHN and the three COX-2 or three IL-10 SNPs. We analyzed three haplotypes (ht1, ht2, ht3) for COX-2 and found that COX-2 ht3+/+ was associated with a decreased risk of SCCHN in a Korean sample, compared with the COX-2 ht3 -/- genotype (P=0.03). Two haplotypes (ht1, ht2) of IL-10 were analyzed and there was no statistical significance in the distribution of haplotypes. Based on these results, the COX-2 haplotype ht3 can be used as a molecular biomarker to predict low risk groups of SCCHN in a Korean sample

    Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle

    Get PDF
    BACKGROUND: Cold carcass weight (CW) and longissimus muscle area (EMA) are the major quantitative traits in beef cattle. In this study, we found several polymorphisms of growth hormone-releasing hormone (GHRH) gene and examined the association of polymorphisms with carcass traits (CW and EMA) in Korean native cattle (Hanwoo). RESULTS: By direct DNA sequencing in 24 unrelated Korean cattle, we identified 12 single nucleotide polymorphisms within the 9 kb full gene region, including the 1.5 kb promoter region. Among them, six polymorphic sites were selected for genotyping in our beef cattle (n = 428) and five marker haplotypes (frequency > 0.1) were identified. Statistical analysis revealed that -4241A>T showed significant associations with CW and EMA. CONCLUSION: Our findings suggest that polymorphisms in GHRH might be one of the important genetic factors that influence carcass yield in beef cattle. Sequence variation/haplotype information identified in this study would provide valuable information for the production of a commercial line of beef cattle

    Association between Bone Mineral Density and LDL Receptor-Related Protein 5 Gene Polymorphisms in Young Korean Men

    Get PDF
    Recently, It has been reported that the LDL receptor-related protein 5 (LRP5) regulates bone formation, and that mutations of the gene cause osteoporosis-pseudoglioma syndrome or high bone mass phenotypes. However, the mutations cannot explain a genetic trait for osteoporosis in the general population because of their rarity. From 219 Korean men aged 20-34 yr, we looked for six known polymorphisms causing amino acid changes in the LRP5 coding region, and investigated their association with bone mineral density (BMD) at the following anatomical sites: lumbar spine (L2-L4) and the left proximal femur (femoral neck, Ward's triangle, trochanter and shaft). We found that the Q89R polymorphism was significantly associated with BMD at the femoral neck and Ward's triangle (p=0.004 and <0.001, respectively). However, after adjusting for age, weight and height, a statistically significant association only occurred at the Ward's triangle (p=0.043), and a marginal association was observed at the femoral neck (p=0.098). No A400V, V667M, R1036Q and A1525V polymorphisms were found, and no statistically significant association was found between the A1330V polymorphism and BMD at any sites. Although we failed to demonstrate a clear association between the LRP5 polymorphism and peak bone mass in young men, the present study suggests that larger-scale studies on the Q89R polymorphism need to be performed
    • 

    corecore