3 research outputs found

    Prediction of velocity and attitude of a yacht sailing upwind by computational fluid dynamics

    Get PDF
    One of the most important factors in sailing yacht design is accurate velocity prediction. Velocity prediction programs (VPP's) are widely used to predict velocity of sailing yachts. VPP's, which are primarily based on experimental data and experience of long years, however suffer limitations when applied in realistic conditions. Thus, in the present study, a high fidelity velocity prediction method using computational fluid dynamics (CFD) was proposed. Using the developed method, velocity and attitude of a 30 feet sloop yacht, which was developed by Korea Research Institute of Ship and Ocean (KRISO) and termed KORDY30, were predicted in upwind sailing condition

    Highly Stable Organic Transistors on Paper Enabled by a Simple and Universal Surface Planarization Method

    No full text
    In this work, operationally and mechanically stable organic field-effect transistors (OFETs) are demonstrated on aramid fiber-based paper enabled by a simple and universal surface planarization method. By employing a nanoimprint lithography-inspired surface smoothening method, rough aramid paper is successfully smoothened from a scale of several tens of micrometers to a sub-nanometer-scale surface roughness. Owing to the sub-nanometer-scale surface roughness of the aramid paper, the OFETs fabricated on the aramid paper exhibit decent field-effect mobility (0.25 cm(2) V-1 s(-1)) with a high current on-to-off ratio (>10(7)), both of which are comparable with those of OFETs fabricated on rigid silicon substrates. Moreover, the OFETs fabricated on the aramid paper exhibit both high operational and mechanical stability; this is indicated by a bias-stress-induced threshold voltage shift ( increment V-TH approximate to 4.27 V under an excessive gate bias stress of 1.7 MV cm(-1) for 1 h 30 min) comparable to that of OFETs on a rigid silicon substrate, moderate field-effect mobility, and a threshold voltage stability under 1000 bending cycles with a compressive strain of 1%. The demonstration of highly stable OFETs on paper enabled by the simple planarization method will expand the potential use of various types of paper in electronic applications.N
    corecore