7 research outputs found

    Self-folding with shape memory composites

    Get PDF
    Origami-inspired manufacturing can produce complex structures and machines by folding two-dimensional composites into three-dimensional structures. This fabrication technique is potentially less expensive, faster, and easier to transport than more traditional machining methods, including 3-D printing. Self-folding enhances this method by minimizing the manual labor involved in folding, allowing for complex geometries and enabling remote or automated assembly. This paper demonstrates a novel method of self-folding hinges using shape memory polymers (SMPs), paper, and resistive circuits to achieve localized and individually addressable folding at low cost. A model for the torque exerted by these composites was developed and validated against experimental data, in order to determine design rules for selecting materials and designing hinges. Torque was shown to increase with SMP thickness, resistive circuit width, and supplied electrical current. This technique was shown to be capable of complex geometries, as well as locking assemblies with sequential folds. Its functionality and low cost make it an ideal basis for a new type of printable manufacturing based on two-dimensional fabrication techniques.National Science Foundation (U.S.) (award number CCF-1138967)National Science Foundation (U.S.) (award number EFRI-1240383

    Self-folding shape memory laminates for automated fabrication

    Get PDF
    Nature regularly uses self-folding as an efficient approach to automated fabrication. In engineered systems, however, the use of self-folding has been primarily restricted to the assembly of small structures using exotic materials and/or complex infrastructures. In this paper we present three approaches to the self-folding of structures using low-cost, rapid-prototyped shape memory laminates. These structures require minimal deployment infrastructure, and are activated by light, heat, or electricity. We compare the fabrication of a fundamental structure (a cube) using each approach, and test ways to control fold angles in each case. Finally, for each self-folding approach we present a unique structure that the approach is particularly suited to fold, and discuss the advantages and disadvantages of each approach.National Science Foundation (U.S.) (Award CCF-1138967)National Science Foundation (U.S.) (Award EFRI-1240383
    corecore