20 research outputs found

    Dynamical Domain Wall and Localization

    Get PDF
    Based on the previous works (arXiv:1202.5375 and 1402.1346), we investigate the localization of the fields on the dynamical domain wall, where the four dimensional FRW universe is realized on the domain wall in the five dimensional space-time. Especially we show that the chiral spinor can localize on the domain wall, which has not been succeeded in the past works as the seminal work in arXiv:0810.3746.Comment: LaTeX 7 pages, no figure, version to appear in Physics Letters

    Brain Dp140 alters glutamatergic transmission and social behaviour in the mdx52 mouse model of Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice

    Locally and Globally Coupled Oscillators in Muscle

    Get PDF
    At an intermediate activation level, striated muscle exhibits autonomous oscillations called SPOC, in which the basic contractile units, sarcomeres, oscillate in length, and various oscillatory patterns such as traveling waves and their disrupted forms appear in a myofibril. Here we show that these patterns are reproduced by mechanically connecting in series the unit model that explains characteristics of SPOC at the single-sarcomere level. We further reduce the connected model to phase equations, revealing that the combination of local and global couplings is crucial to the emergence of these patterns

    Molecular motors as an auto-oscillator

    No full text
    The organization of biomotile systems possesses structural and functional hierarchy, building up from single molecules via protein assemblies and cells further up to an organ. A typical example is the hierarchy of cardiac muscle, on the top of which is the heart. The heartbeat is supported by the rhythmic contraction of the muscle cells that is controlled by the Ca2+ oscillation triggered by periodic electrical excitation of pacemaker cells. Thus, it is usually believed that the heartbeat is governed by the control system based on a sequential one-way chain with the electrical∕chemical information transfer from the upper to the lower level of hierarchy. On the other hand, it has been known for many years that the contractile system of muscle, i.e., skinned muscle fibers and myofibrils, itself possesses the auto-oscillatory properties even in the constant chemical environment. A recent paper [Plaçais, et al. (2009), Phys. Rev. Lett. 103, 158102] demonstrated the auto-oscillatory movement∕tension development in an in vitro motility assay composed of a single actin filament and randomly distributed myosin II molecules, suggesting that the auto-oscillatory properties are inherent to the contractile proteins. Here we discuss how the molecular motors may acquire the higher-ordered auto-oscillatory properties while stepping up the staircase of hierarchy
    corecore