93 research outputs found

    Design requirements for group-IV laser based on fully strained Ge1-xSnx embedded in partially relaxed Si1-y-zGeySnz buffer layers

    Get PDF
    Theoretical calculation using the model solid theory is performed to design the stack of a group-IV laser based on a fully strained Ge1-xSnx active layer grown on a strain relaxed Si1-y-zGeySnz buffer/barrier layer. The degree of strain relaxation is taken into account for the calculation for the first time. The transition between the indirect and the direct band material for the active Ge1-xSnx layer is calculated as function of Sn content and strain. The required Sn content in the buffer layer needed to apply the required strain in the active layer in order to obtain a direct bandgap material is calculated. Besides, the band offset between the (partly) strain relaxed Si1-y-zGeySnz buffer layer and the Ge1-xSnx pseudomorphically grown on it is calculated. We conclude that an 80% relaxed buffer layer needs to contain 13.8% Si and 14% Sn in order to provide sufficiently high band offsets with respect to the active Ge1-xSnx layer which contains at least 6% Sn in order to obtain a direct bandgap

    Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared

    Get PDF
    Mid-infrared wavelength (de)multiplexers based on planar concave gratings (PCGs) fabricated on a germanium-on-silicon waveguide platform are presented. PCGs with two different types of gratings (flat facet and distributed bragg reflectors) are analyzed for both transverse electric (TE) and transverse magnetic (TM) polarizations. The insertion loss and cross talk for flat facet PCGs are found to be -7.6/-6.4¿dB and 27/21¿dB for TE/TM polarization. For distributed bragg reflector PCGs the insertion loss and cross talk are found to be -4.9/-4.2¿dB and 22/23¿dB for TE/TM polarization

    Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers

    Get PDF
    In this letter, we describe the use of a germanium-on- silicon waveguide platform to realize an arrayed waveguide grating (AWG) operating in the 5 mu m wavelength range, which can be used as a wavelength multiplexer for mid-infrared (midIR) light engines or as the core element of a midIR spectrometer. Ge-on-Si waveguide losses in the range 2.5-3.5 dB/cm for TE polarized light and 3-4 dB/cm for TM polarized light in the 5.15-5.4 mu m wavelength range are reported. A 200 GHz channel spacing 5-channel AWG with an insertion loss/crosstalk of 2.5/3.1 dB and 20/16 dB for TE and TM polarization, respectively, is demonstrated

    High-performance Ge/Si electro-absorption optical modulator up to 85°C and its highly efficient photodetector operation

    Get PDF
    We studied a high-speed Ge/Si electro-absorption optical modulator (EAM) evanescently coupled with a Si waveguide of a lateral p–n junction for a high-bandwidth optical interconnect over a wide range of temperatures from 25 °C to 85 °C. We demonstrated 56 Gbps high-speed operation at temperatures up to 85 °C. From the photoluminescence spectra, we confirmed that the bandgap energy dependence on temperature is relatively small, which is consistent with the shift in the operation wavelengths with increasing temperature for a Ge/Si EAM. We also demonstrated that the same device operates as a high-speed and high-efficiency Ge photodetector with the Franz-Keldysh (F-K) and avalanche-multiplication effects. These results demonstrate that the Ge/Si stacked structure is promising for both high-performance optical modulators and photodetectors integrated on Si platforms
    corecore