81 research outputs found

    Toxin-Induced and Genetic Animal Models of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a common progressive neurodegenerative disorder. The major pathological hallmarks of PD are the selective loss of nigrostriatal dopaminergic neurons and the presence of intraneuronal aggregates termed Lewy bodies (LBs), but the pathophysiological mechanisms are not fully understood. Epidemiologically, environmental neurotoxins such as pesticides are promising candidates for causative factors of PD. Oxidative stress and mitochondrial dysfunction induced by these toxins could contribute to the progression of PD. While most cases of PD are sporadic, specific mutations in genes that cause familial forms of PD have led to provide new insights into its pathogenesis. This paper focuses on animal models of both toxin-induced and genetically determined PD that have provided significant insight for understanding this disease. We also discuss the validity, benefits, and limitations of representative models

    The role of oxidative stress in the pathogenesis of Alzheimer's disease

    Get PDF
    [ES]: La presencia de estrés oxidativo es la característica más temprana de la Enfermedad de Alzheimer (EA), lo cual proporciona un atractivo objetivo para intervenciones terapéuticas. Entre los mayores retos que se presentan actualmente están el establecimiento de la fuente de estrés oxidativo y la determinación de cómo este proceso puede influir en la etiología de la Enfermedad de Alzheimer. Este es un tema complejo, pues varios procesos, enzimáticos y no-enzimáticos, están implicados en la formación de oxígeno reactivo y otras moléculas tóxicas. En este artículo discutimos el progreso en el entendimiento de estos procesos[EN]: Oxidative stress is the earliest feature of Alzheimer disease and an attractive therapeutic target. One of the major challenges today is to establish the source of the reactive oxygen and to determine the role of oxidative stress in the etiology of Alzheimer disease. This is a complex issue since a variety of enzymatic and non-enzymatic processes are involved in the formation of reactive oxygen and other toxic molecules. In this review, we discuss progress in the understanding of these processes.Peer reviewe

    Colocalization of 14-3-3 Proteins with SOD1 in Lewy Body-Like Hyaline Inclusions in Familial Amyotrophic Lateral Sclerosis Cases and the Animal Model

    Get PDF
    Background and Purpose: Cu/Zn superoxide dismutase (SOD1) is a major component of Lewy body-like hyaline inclusion (LBHI) found in the postmortem tissue of SOD1-linked familial amyotrophic lateral sclerosis (FALS) patients. In our recent studies, 14-3-3 proteins have been found in the ubiquitinated inclusions inside the anterior horn cells of spinal cords with sporadic amyotrophic lateral sclerosis (ALS). To further investigate the role of 14-3-3 proteins in ALS, we performed immunohistochemical analysis of 14-3-3 proteins and compared their distributions with those of SOD1 in FALS patients and SOD1-overexpressing mice. Methods: We examined the postmortem brains and the spinal cords of three FALS cases (A4V SOD1 mutant). Transgenic mice expressing the G93A mutant human SOD1 (mutant SOD1-Tg mice), transgenic mice expressing the wild-type human SOD1 (wild-type SOD1-Tg mice), and non-Tg wild-type mice were also subjected to the immunohistochemical analysis. Results: In all the FALS patients, LBHIs were observed in the cytoplasm of the anterior horn cells, and these inclusions were immunopositive intensely for pan 14-3-3, 14-3-3β\beta, and 14-3-3γ\gamma. In the mutant SOD1-Tg mice, a high degree of immunoreactivity for misfolded SOD1 (C4F6) was observed in the cytoplasm, with an even greater degree of immunoreactivity present in the cytoplasmic aggregates of the anterior horn cells in the lumbar spinal cord. Furthermore, we have found increased 14-3-3β\beta and 14-3-3γ\gamma immunoreactivities in the mutant SOD1-Tg mice. Double immunofluorescent staining showed that C4F6 and 14-3-3 proteins were partially co-localized in the spinal cord with FALS and the mutant SOD1-Tg mice. In comparison, the wild-type SOD1-Tg and non-Tg wild-type mice showed no or faint immunoreactivity for C4F6 and 14-3-3 proteins (pan 14-3-3, 14-3-3β\beta, and 14-3-3γ\gamma) in any neuronal compartments. Discussion: These results suggest that 14-3-3 proteins may be associated with the formation of SOD1-containing inclusions, in FALS patients and the mutant SOD1-Tg mice.Mathematic

    発症早期ALS患者に対する超高用量メチルコバラミンの有効性・安全性について : ランダム化比較試験

    Get PDF
    Importance: Post hoc analysis in a phase 2/3 trial indicated ultra-high dose methylcobalamin slowed decline of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) total score at week 16 as well as at week 182, without increase of adverse events, in patients with amyotrophic lateral sclerosis (ALS) who were enrolled within 1 year from onset. Objective: To validate the efficacy and safety of ultra-high dose methylcobalamin for patients with ALS enrolled within 1 year of onset. Design: A multicenter, placebo-controlled, double-blind, randomized phase 3 trial with 12-week observation and 16-week randomized period, conducted from October 2017 to September 2019. Setting: Twenty-five neurology centers in Japan. Participants: Patients with ALS diagnosed within 1 year of onset by the updated Awaji criteria were initially enrolled. Of those, patients fulfilling the following criteria after 12-week observation were eligible for randomization: 1- or 2-point decrease in ALSFRS-R total score, a percent forced vital capacity over 60%, no history of noninvasive respiratory support and tracheostomy, and being ambulant. The target number was 64 in both methylcobalamin and placebo groups. Of 203 patients enrolled in the observation, 130 patients (age, 61.0 ± 11.7 years; female, 56) met the criteria and were randomly assigned through an electronic web-response system to methylcobalamin or placebo (65 for each). Of these, 129 patients were eligible for the full analysis set, and 126 completed the double-blind stage. Interventions: Intramuscular injection of methylcobalamin 50 mg or placebo twice weekly for 16 weeks. Main outcomes and measures: The primary endpoint was change in ALSFRS-R total score from baseline to week 16 in the full analysis set. Results: The least-squares mean difference in ALSFRS-R total score at week 16 of the randomized period was 1.97 points greater with methylcobalamin than placebo (−2.66 versus −4.63; 95% CI, 0.44–3.50; P = 0.012). The incidence of adverse events was similar between the two groups. Conclusions and relevance: Ultra-high dose methylcobalamin was efficacious in slowing functional decline and safe in the 16-week treatment period in ALS patients in the early stage and with moderate progression rate. Trial registration: UMIN-CTR Identifier: UMIN000029588 (umin.ac.jp/ctr); ClinicalTrials.gov Identifier: NCT03548311 (clinicaltrials.gov

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension
    corecore