79 research outputs found

    Pctaire1/Cdk16 promotes skeletal myogenesis by inducing myoblast migration and fusion

    Get PDF
    AbstractThe Cdk-related protein kinase Pctaire1/Cdk16 is abundantly expressed in brain, testis and skeletal muscle. Functional roles of Pctaire1 such as regulation of neuron migration and neurite outgrowth thus far have been mainly elucidated in the field of nervous system development. Although these regulations based on cytoskeletal rearrangements evoke a possible role of Pctaire1 in the development of skeletal muscle, little is known in this regard. In this study, we demonstrated that myogenic differentiation and subsequent fusion is promoted in Pctaire1 overexpressing cells, and conversely, is inhibited in the knockdown cells. Furthermore, our findings suggest that Pctaire1 exerts promyogenic effects by regulating myoblast migration and process formation during skeletal myogenesis

    Triangular arbitrage as an interaction among foreign exchange rates

    Full text link
    We first show that there are in fact triangular arbitrage opportunities in the spot foreign exchange markets, analyzing the time dependence of the yen-dollar rate, the dollar-euro rate and the yen-euro rate. Next, we propose a model of foreign exchange rates with an interaction. The model includes effects of triangular arbitrage transactions as an interaction among three rates. The model explains the actual data of the multiple foreign exchange rates well.Comment: 19 pages, 21 eps files embedded. Physica A, to be publishe

    Biotinylated-sortase self-cleavage purification (BISOP) method for cell-free produced proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technology used for the purification of recombinant proteins is a key issue for the biochemical and structural analyses of proteins. In general, affinity tags, such as glutathione-S-transferase or six-histidines, are used to purify recombinant proteins. Since such affinity tags often interfere negatively with the structural and functional analyses of proteins, they are usually removed by treatment with proteases. Previously, Dr. H. Mao reported self-cleavage purification of a target protein by fusing the sortase protein to its N-terminal end, and subsequently obtained tag-free recombinant protein following expression in <it>Escherichia coli</it>. This method, however, is yet to be applied to the cell-free based protein production.</p> <p>Results</p> <p>The histidine tag-based self-cleavage method for purifying proteins produced by the wheat cell-free protein synthesis system showed high background, low recovery, and unexpected cleavage between the N-terminally fused sortase and target protein during the protein synthesis. Addition of calcium chelator BAPTA to the cell-free reaction inhibited the cleavage. In order to adapt the sortase-based purification method to the cell-free system, we next used biotin as the affinity tag. The biotinylated sortase self-cleavage purification (BISOP) method provided tag-free, highly purified proteins due to improved recovery of proteins from the resin. The N-terminal sequence analysis of the GFP produced by the BISOP method revealed that the cleavage indeed occurred at the right cleavage site. Using this method, we also successfully purified the E2 heterocomplex of USE2N and USE2v1. The c-terminal src kinase (CSK) obtained by the BISOP method showed high activity in phosphorylating the Src protein. Furthermore, we demonstrated that this method is suitable for automatically synthesizing and purifying proteins using robots.</p> <p>Conclusion</p> <p>We demonstrated that the newly developed BISOP method is very useful for obtaining high quality, tag-free recombinant proteins, produced using the cell-free system, for biochemical and structural analyses.</p

    Caspase-8 cleavage of the interleukin-21 (IL-21) receptor is a negative feedback regulator of IL-21 signaling

    Get PDF
    AbstractWe screened a library of human single-transmembrane proteins (sTMPs), produced by a cell-free system, using a luminescent assay to identify those that can be cleaved by caspase-8 (CASP8). Of the 407 sTMPs screened, only the interleukin-21 receptor (IL21R), vezatin (VEZT), and carbonic anhydrase XIV were cleaved at Asp344, Asp655 and Asp53, respectively. We confirmed that IL21R and VEZT were also cleaved in apoptotic HeLa cells with the cleavage sites. Interestingly, IL21R was cleaved within 30min after apoptosis induction. Furthermore the CASP8-cleaved form of IL21R did not induce phosphorylation at Tyr705 of STAT3. Our results suggest that the interleukin-21 signaling cascade is negatively regulated by CASP8

    Next‐generation sequencing in two cases of de novo acute basophilic leukaemia

    Get PDF
    Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloid leukaemia (AML); therefore, few data are available about its biology. Herein, we analysed two ABL patients using flow cytometry and next-generation sequencing (NGS). Two cell populations were detected by flow cytometry in both patients. In Case no. 1, blasts (CD34⁺, CD203c⁻, CD117⁺, CD123dim⁺) and basophils (CD34⁻, CD203c⁺, CD117±, CD123⁺) were identified, both of which were found by NGS to harbour the 17p deletion and have loss of heterozygosity of TP53. In Case no. 2, blasts (CD33⁺, CD34⁺, CD123⁻) and basophils (CD33⁺, CD34⁺, CD123⁺) were identified. NGS detected NPM1 mutations in either blasts or basophils, and TET2 in both. These data suggest an overlap of the mutational landscape of ABL and AML, including TP53 and TET2 mutations. Moreover, additional mutations or epigenetic factors may contribute for the differentiation into basophilic blasts

    OTUD1 deubiquitinase regulates NF-κB- and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways

    Get PDF
    Deubiquitinating enzymes (DUBs) regulate numerous cellular functions by removing ubiquitin modifications. We examined the effects of 88 human DUBs on linear ubiquitin chain assembly complex (LUBAC)-induced NF-κB activation, and identified OTUD1 as a potent suppressor. OTUD1 regulates the canonical NF-κB pathway by hydrolyzing K63-linked ubiquitin chains from NF-κB signaling factors, including LUBAC. OTUD1 negatively regulates the canonical NF-κB activation, apoptosis, and necroptosis, whereas OTUD1 upregulates the interferon (IFN) antiviral pathway. Mass spectrometric analysis showed that OTUD1 binds KEAP1, and the N-terminal intrinsically disordered region of OTUD1, which contains an ETGE motif, is indispensable for the KEAP1-binding. Indeed, OTUD1 is involved in the KEAP1-mediated antioxidant response and reactive oxygen species (ROS)-induced cell death, oxeiptosis. In Otud1−/−-mice, inflammation, oxidative damage, and cell death were enhanced in inflammatory bowel disease, acute hepatitis, and sepsis models. Thus, OTUD1 is a crucial regulator for the inflammatory, innate immune, and oxidative stress responses and ROS-associated cell death pathways

    Involvement of heterologous ubiquitination including linear ubiquitination in Alzheimer’s disease and amyotrophic lateral sclerosis

    Get PDF
    In neurodegenerative diseases such as Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS), the progressive accumulation of ubiquitin-positive cytoplasmic inclusions leads to proteinopathy and neurodegeneration. Along with the seven types of Lys-linked ubiquitin chains, the linear ubiquitin chain assembly complex (LUBAC)-mediated Met1-linked linear ubiquitin chain, which activates the canonical NF-κB pathway, is also involved in cytoplasmic inclusions of tau in AD and TAR DNA-binding protein 43 in ALS. Post-translational modifications, including heterologous ubiquitination, affect proteasomal and autophagic degradation, inflammatory responses, and neurodegeneration. Single nucleotide polymorphisms (SNPs) in SHARPIN and RBCK1 (which encodes HOIL-1L), components of LUBAC, were recently identified as genetic risk factors of AD. A structural biological simulation suggested that most of the SHARPIN SNPs that cause an amino acid replacement affect the structure and function of SHARPIN. Thus, the aberrant LUBAC activity is related to AD. Protein ubiquitination and ubiquitin-binding proteins, such as ubiquilin 2 and NEMO, facilitate liquid-liquid phase separation (LLPS), and linear ubiquitination seems to promote efficient LLPS. Therefore, the development of therapeutic approaches that target ubiquitination, such as proteolysis-targeting chimeras (PROTACs) and inhibitors of ubiquitin ligases, including LUBAC, is expected to be an additional effective strategy to treat neurodegenerative diseases

    Nutrient-induced FNIP degradation by SCFβ-TRCP regulates FLCN complex localization and promotes renal cancer progression.

    Get PDF
    Folliculin-interacting protein 1 and 2 (FNIP1 and FNIP2) play critical roles in preventing renal malignancy through their association with the tumor suppressor FLCN. Mutations in FLCN are associated with Birt-Hogg-Dubé (BHD) syndrome, a rare disorder with increased risk of renal cancer. Recent studies indicated that FNIP1/FNIP2 double knockout mice display enlarged polycystic kidneys and renal carcinoma, which phenocopies FLCN knockout mice, suggesting that these two proteins function together to suppress renal cancer. However, the molecular mechanism functionally linking FNIP1/FNIP2 and FLCN remains largely elusive. Here, we demonstrated that FNIP2 protein is unstable and subjected to proteasome-dependent degradation via β-TRCP and Casein Kinase 1 (CK1)-directed ubiquitination in a nutrition-dependent manner. Degradation of FNIP2 leads to lysosomal dissociation of FLCN and subsequent lysosomal association of mTOR, which in turn promotes the proliferation of renal cancer cells. These results indicate that SCFβ-TRCP negatively regulates the FLCN complex by promoting FNIP degradation and provide molecular insight into the pathogenesis of BHD-associated renal cancer.福岡歯科大学2016年

    Goreisan Inhibits Upregulation of Aquaporin 4 and Formation of Cerebral Edema in the Rat Model of Juvenile Hypoxic-Ischemic Encephalopathy

    Get PDF
    Secondary cerebral edema regulation is of prognostic significance in hypoxic-ischemic encephalopathy (HIE), and aquaporin 4 (AQP4) plays an important role in the pathogenesis of cerebral edema. The traditional Japanese herbal medicine Goreisan relieves brain edema in adults; however, its effect and pharmacological mechanism in children are unknown. We investigated the effects of Goreisan on HIE-associated brain edema and AQP4 expression in a juvenile rat model, established by combined occlusion of middle cerebral and common carotid arteries. Magnetic resonance imaging showed that the lesion areas were significantly smaller in the Goreisan- (2 g/kg) treated group than in the nontreated (saline) group at 24 and 48 h postoperatively. AQP4 mRNA levels in the lesion and nonlesion sides were significantly suppressed in the Goreisan group compared with the nontreated group 36 h postoperatively. Western blotting revealed that levels of AQP4 protein were significantly decreased in the Goreisan group compared with the nontreated group in the lesion side 72 h postoperatively, but not at 12 or 36 h. After 14 days, the Goreisan group had a significantly better survival rate. These findings suggest that Goreisan suppresses brain edema in HIE and improves survival in juvenile rats, possibly via regulation of AQP4 expression and function
    corecore