20,263 research outputs found
QED Radiative Correction for the Single-W Production using a Parton Shower Method
A parton shower method for the photonic radiative correction is applied to
the single W-boson production processes. The energy scale for the evolution of
the parton shower is determined so that the correct soft-photon emission is
reproduced. Photon spectra radiated from the partons are compared with those
from the exact matrix elements, and show a good agreement. Possible errors due
to a inappropriate energy-scale selection or due to the ambiguity of energy
scale determination are also discussed, particularly for the measurements on
triple gauge-couplings.Comment: 17 pages, 6 Postscript figure
QED Radiative Corrections to the Non-annihilation Processes Using the Structure Function and the Parton Shower
Inclusion of the QED higher order radiative corrections in the two-photon
process, e+e- -> e+e- mu+mu-, is examined by means of the structure function
and the parton shower. Results are compared with the exact
calculations and give a good agreement. These two methods should be universally
applicable to any other non-annihilation processes like the single-W
productions in the e+e- collisions. In this case, however, the energy scale for
the evolution by the renormalization-group equation should be chosen properly
depending on the dominant diagrams for the given process. A method to find the
most suitable energy scale is proposed.Comment: 17 pages, LaTeX, 5 figure
A Relativistic Description of Gentry's New Redshift Interpretation
We obtain a new expression of the Friedmann-Robertson-Walker metric, which is
an analogue of a static chart of the de Sitter space-time. The reduced metric
contains two functions, and , which are interpreted as,
respectively, the mass function and the gravitational potential. We find that,
near the coordinate origin, the reduced metric can be approximated in a static
form and that the approximated metric function, , satisfies the
Poisson equation. Moreover, when the model parameters of the
Friedmann-Robertson-Walker metric are suitably chosen, the approximated metric
coincides with exact solutions of the Einstein equation with the perfect fluid
matter. We then solve the radial geodesics on the approximated space-time to
obtain the distance-redshift relation of geodesic sources observed by the
comoving observer at the origin. We find that the redshift is expressed in
terms of a peculiar velocity of the source and the metric function, ,
evaluated at the source position, and one may think that this is a new
interpretation of {\it Gentry's new redshift interpretation}.Comment: 11 pages. Submitted to Modern Physics Letters
The small-scale structure of photospheric convection retrieved by a deconvolution technique applied to Hinode/SP data
Solar granules are bright patterns surrounded by dark channels called
intergranular lanes in the solar photosphere and are a manifestation of
overshooting convection. Observational studies generally find stronger upflows
in granules and weaker downflows in intergranular lanes. This trend is,
however, inconsistent with the results of numerical simulations in which
downflows are stronger than upflows through the joint action of gravitational
acceleration/deceleration and pressure gradients. One cause of this discrepancy
is the image degradation caused by optical distortion and light diffraction and
scattering that takes place in an imaging instrument. We apply a deconvolution
technique to Hinode/SP data in an attempt to recover the original solar scene.
Our results show a significant enhancement in both, the convective upflows and
downflows, but particularly for the latter. After deconvolution, the up- and
downflows reach maximum amplitudes of -3.0 km/s and +3.0 km/s at an average
geometrical height of roughly 50 km, respectively. We found that the velocity
distributions after deconvolution match those derived from numerical
simulations. After deconvolution the net LOS velocity averaged over the whole
FOV lies close to zero as expected in a rough sense from mass balance.Comment: 32 pages, 13 figures, accepted for publication in Ap
- …