227 research outputs found

    Sp1 elements in SULT2B1b promoter and 5′-untranslated region of mRNA: Sp1/Sp2 induction and augmentation by histone deacetylase inhibition

    Get PDF
    AbstractThe steroid/sterol sulfotransferase gene (SULT2B1) encodes for two isozymes of which one (SULT2B1b) sulfonates cholesterol and is selectively expressed in skin. The human SULT2B1 gene contains neither a TATAAA nor a CCAAT motif upstream of the coding region for SULT2B1b; however, this area is GC-rich. Of five Sp1 elements identified two had regulatory activity utilizing immortalized human keratinocytes: one element is located above the ostensible transcription initiation site, whereas the other is located within the 5′-untranslated region of the SULT2B1b mRNA. Sp1 and Sp2 transcription factors identified by supershift analyses induced reporter gene activity, an effect markedly augmented by histone deacetylase inhibition

    Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In silico </it>genome-scale metabolic models enable the analysis of the characteristics of metabolic systems of organisms. In this study, we reconstructed a genome-scale metabolic model of <it>Corynebacterium glutamicum </it>on the basis of genome sequence annotation and physiological data. The metabolic characteristics were analyzed using flux balance analysis (FBA), and the results of FBA were validated using data from culture experiments performed at different oxygen uptake rates.</p> <p>Results</p> <p>The reconstructed genome-scale metabolic model of <it>C. glutamicum </it>contains 502 reactions and 423 metabolites. We collected the reactions and biomass components from the database and literatures, and made the model available for the flux balance analysis by filling gaps in the reaction networks and removing inadequate loop reactions. Using the framework of FBA and our genome-scale metabolic model, we first simulated the changes in the metabolic flux profiles that occur on changing the oxygen uptake rate. The predicted production yields of carbon dioxide and organic acids agreed well with the experimental data. The metabolic profiles of amino acid production phases were also investigated. A comprehensive gene deletion study was performed in which the effects of gene deletions on metabolic fluxes were simulated; this helped in the identification of several genes whose deletion resulted in an improvement in organic acid production.</p> <p>Conclusion</p> <p>The genome-scale metabolic model provides useful information for the evaluation of the metabolic capabilities and prediction of the metabolic characteristics of <it>C. glutamicum</it>. This can form a basis for the <it>in silico </it>design of <it>C. glutamicum </it>metabolic networks for improved bioproduction of desirable metabolites.</p

    Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Corynebacterium glutamicum </it>has several anaplerotic pathways (anaplerosis), which are essential for the productions of amino acids, such as lysine and glutamate. It is still not clear how flux changes in anaplerotic pathways happen when glutamate production is induced by triggers, such as biotin depletion and the addition of the detergent material, Tween 40. In this study, we quantitatively analyzed which anaplerotic pathway flux most markedly changes the glutamate overproduction induced by Tween 40 addition.</p> <p>Results</p> <p>We performed a metabolic flux analysis (MFA) with [1-<sup>13</sup>C]- and [U-<sup>13</sup>C]-labeled glucose in the glutamate production phase of <it>C. glutamicum</it>, based on the analysis of the time courses of <sup>13</sup>C incorporation into proteinogenic amino acids by gas chromatography-mass spectrometry (GC-MS). The flux from phosphoenolpyruvate (PEP) to oxaloacetate (Oxa) catalyzed by phosphoenolpyruvate carboxylase (PEPc) was active in the growth phase not producing glutamate, whereas that from pyruvate to Oxa catalyzed by pyruvate carboxylase (Pc) was inactive. In the glutamate overproduction phase induced by the addition of the detergent material Tween 40, the reaction catalyzed by Pc also became active in addition to the reaction catalyzed by PEPc.</p> <p>Conclusion</p> <p>It was clarified by a quantitative <sup>13</sup>C MFA that the reaction catalyzed by Pc is most markedly increased, whereas other fluxes of PEPc and PEPck remain constant in the glutamate overproduction induced by Tween 40. This result is consistent with the previous results obtained in a comparative study on the glutamate productions of genetically recombinant Pc- and PEPc-overexpressing strains. The importance of a specific reaction in an anaplerotic pathway was elucidated at a metabolic level by MFA.</p

    Phenotypic convergence in bacterial adaptive evolution to ethanol stress

    Get PDF
    Stability of ethanol tolerance. Strain F at the end point (2,500 h) and at 576 h was cultivated for 200 generations absent ethanol stress. After the cultivation, ethanol tolerance was evaluated by measuring specific growth rates in 5 % ethanol stress (red bars). The growth rates under ethanol stress were similar to those before the non-stress cultivation (blue bars) and were significantly higher than that of the parent strain. (PDF 976 kb

    スウチ ケイサンホウ エンシュウ バイオ ジョウホウ カイセキ エンシュウ

    Full text link
    GSE コモン情報処理演習室のコンピュータシステムを使い、バイオテクノロジーの領域で 扱う実験データから、コンピュータを用いて情報を切り出す方法について学ぶことを目的 とする。そこでは、数値データや文字データの処理法、コンピュータプログラミングの基 礎に加えて、データ処理のアルゴリズムの立て方についても学ぶ。また、バイオテクノロ ジーに関連するデータベースの利用についても演習する。この授業は講義と演習を並行し て行い、講義の時間においても小演習を行い習熟度を上げる。なお、計算機言語としてC 言語を使用する。大阪大学OpenCourseWare:学部講

    ANGPTL4 Expression Is Increased in Epicardial Adipose Tissue of Patients with Coronary Artery Disease

    Get PDF
    Epicardial adipose tissue (EAT) is known to affect atherosclerosis and coronary artery disease (CAD) pathogenesis, persistently releasing pro-inflammatory adipokines that affect the myocardium and coronary arteries. Angiopoietin-like 4 (ANGPTL4) is a protein secreted from adipose tissue and plays a critical role in the progression of atherosclerosis. Here, the expression of ANGPTL4 in EAT was investigated in CAD subjects. Thirty-four consecutive patients (13 patients with significant CAD; 21 patients without CAD) undergoing elective open-heart surgery were recruited. EAT and pericardial fluid were obtained at the time of surgery. mRNA expression and ANGPTL4 and IL-1β levels were evaluated by qRT-PCR and ELISA. The expression of ANGPTL4 (p = 0.0180) and IL-1β (p < 0.0001) in EAT significantly increased in the CAD group compared to that in the non-CAD group and positively correlated (p = 0.004). Multiple regression analysis indicated that CAD is a contributing factor for ANGPTL4 expression in EAT. IL-1β level in the pericardial fluid was significantly increased in patients with CAD (p = 0.020). Moreover, the expression of ANGPTL4 (p = 0.004) and IL-1β (p < 0.001) in EAT was significantly increased in non-obese patients with CAD. In summary, ANGPTL4 expression in EAT was increased in CAD patients
    corecore