15 research outputs found

    Control of immunity and allergy by steroid hormones

    Get PDF
    Steroid hormones, especially glucocorticoids, androgens, and estrogens, have profound influence on immunity. Recent studies using cell-type specific steroid hormone receptor-deficient mice have revealed the precise roles of some of these hormones in the immune system. Glucocorticoids are known to have strong anti-inflammatory and immunosuppressive effects and pleiotropic effects on innate and adaptive immune responses. They suppress the production of inflammatory cytokines by macrophages and DCs and the production of IFN-γ by NK cells, thus inhibiting innate immunity. By contrast, glucocorticoids enhance the immune response by inducing the expression of IL-7R and CXCR4 in T cells and the accumulation of T cells in lymphoid organs in accordance with the diurnal change of the glucocorticoid concentration. Thus, glucocorticoids suppress innate immunity but enhance adaptive immunity. Androgens suppress the homeostasis and activation of ILC2s and the differentiation of Th2 and Th17 cells and enhance the suppressive function of Tregs, thereby alleviating allergic airway inflammation. Thus, these steroid hormones have pleiotropic functions in the immune system. Further investigations are awaited on the regulation of immunity and allergy by estrogens using cell-specific steroid hormone receptor-deficient mice

    Intestinal epithelial cell-derived IL-15 determines local maintenance and maturation of intraepithelial lymphocytes in the intestine

    Get PDF
    Interleukin-15 (IL-15) is a cytokine critical for maintenance of intestinal intraepithelial lymphocytes (IELs), especially CD8αα+ IELs (CD8αα IELs). In the intestine, IL-15 is produced by intestinal epithelial cells (IECs), blood vascular endothelial cells (BECs) and hematopoietic cells. However, the precise role of intestinal IL-15 on IELs is still unknown. To address the question, we generated two kinds of IL-15 conditional knockout (IL-15cKO) mice: villin-Cre (Vil-Cre) and Tie2-Cre IL-15cKO mice. IEC-derived IL-15 was specifically deleted in Vil-Cre IL-15cKO mice, whereas IL-15 produced by BECs and hematopoietic cells is deleted in Tie2-Cre IL-15cKO mice. The cell number and frequency of CD8αα IELs and NK IELs were significantly reduced in Vil-Cre IL-15cKO mice. By contrast, CD8αα IELs were unchanged in Tie2-Cre IL-15cKO mice, indicating that IL-15 produced by BECs and hematopoietic cells is dispensable for CD8αα IELs. Expression of an anti-apoptotic factor, Bcl-2, was decreased, whereas Fas expression was increased in CD8αα IELs of Vil-Cre IL-15cKO mice. Forced expression of Bcl-2 by a Bcl-2 transgene partially restored CD8αα IELs in Vil-Cre IL-15cKO mice, suggesting that some IL-15 signal other than Bcl-2 is required for maintenance of CD8αα IELs. Furthermore, granzyme B production was reduced, whereas PD-1 expression was increased in CD8αα IELs of Vil-Cre IL-15cKO mice. These results collectively suggested that IEC-derived IL-15 is essential for homeostasis of IELs by promoting their survival and functional maturation

    Hematopoietic cell-derived IL-15 supports NK cell development in scattered and clustered localization within the bone marrow

    Get PDF
    骨髄のNK細胞の分化に造血細胞が産生するIL-15が必須である --2種類の局在を示すNK細胞の新規分化モデル--. 京都大学プレスリリース. 2023-09-20.Natural killer (NK) cells are innate immune cells critical for protective immune responses against infection and cancer. Although NK cells differentiate in the bone marrow (BM) in an interleukin-15 (IL-15)-dependent manner, the cellular source of IL-15 remains elusive. Using NK cell reporter mice, we show that NK cells are localized in the BM in scattered and clustered manners. NK cell clusters overlap with monocyte and dendritic cell accumulations, whereas scattered NK cells require CXCR4 signaling. Using cell-specific IL-15-deficient mice, we show that hematopoietic cells, but not stromal cells, support NK cell development in the BM through IL-15. In particular, IL-15 produced by monocytes and dendritic cells appears to contribute to NK cell development. These results demonstrate that hematopoietic cells are the IL-15 niche for NK cell development in the BM and that BM NK cells are present in scattered and clustered compartments by different mechanisms, suggesting their distinct functions in the immune response

    A circulating subset of iNKT cells mediates antitumor and antiviral immunity

    Get PDF
    新規の循環型iNKT細胞を発見 --抗腫瘍・抗ウイルス感染効果の高い免疫細胞療法の開発への貢献に期待--. 京都大学プレスリリース. 2022-10-24.Invariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues. iNKT cells in the thymus were divided into three subpopulations by the expression of the natural killer cell receptor CD244 and the chemokine receptor CXCR6 and designated as C0 (CD244⁻CXCR6⁻), C1 (CD244⁻CXCR6⁺), or C2 (CD244⁺CXCR6⁺) iNKT cells. The development and maturation of C2 iNKT cells from C0 iNKT cells strictly depended on IL-15 produced by thymic epithelial cells. C2 iNKT cells expressed high levels of IFN-γ and granzymes and exhibited more NK cell–like features, whereas C1 iNKT cells showed more T cell–like characteristics. C2 iNKT cells were influenced by the microbiome and aging and suppressed the expression of the autoimmune regulator AIRE in the thymus. In peripheral tissues, C2 iNKT cells were circulating that were distinct from conventional tissue-resident C1 iNKT cells. Functionally, C2 iNKT cells protected mice from the tumor metastasis of melanoma cells by enhancing antitumor immunity and promoted antiviral immune responses against influenza virus infection. Furthermore, we identified human CD244⁺CXCR6⁺ iNKT cells with high cytotoxic properties as a counterpart of mouse C2 iNKT cells. Thus, this study reveals a circulating subset of iNKT cells with NK cell–like properties distinct from conventional tissue-resident iNKT cells

    グルココルチコイドはインターロイキン7受容体とCXCR4を誘導することでT細胞の分布と応答の日内変動を制御する

    No full text
    京都大学0048新制・課程博士博士(医科学)甲第21027号医科博第88号新制||医科||6(附属図書館)京都大学大学院医学研究科医科学専攻(主査)教授 杉田 昌彦, 教授 濵﨑 洋子, 教授 河本 宏学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Rapid chromosomal assignment of medaka mutants by bulked segregant analysis

    No full text
    7 páginas, 2 figuras, 1 tabla.Genetic screens in medaka are leading to the identification of an increasing number of unique mutant phenotypes. However, so far only a few genes responsible for these phenotypes have been characterized. Furthermore, no protocols using a systematic positional cloning strategy have been developed to determine the implicated genes. The PCR-based bulked segregant analysis is a fast and reliable tool to accomplish the initial steps of the positional cloning of a mutation. Here we describe the selection of a panel of genetic markers that, evenly distributed over the 24 chromosomes of medaka, provide a full coverage of the compact medaka genome (800 Mb) when used in bulked segregant analysis. The reference panel, which consists of 48 EST-derived markers, is anchored to a collection of more than 2000 polymorphic markers, thus facilitating a rapid transition from chromosomal assignment to fine mapping of the mutants. More importantly, since most of the genetic screens have been performed in the inbred Cab strain (derived from the Southern population), the selection of markers included in this panel was intended to optimize the recognition of polymorphisms between Cab and the polymorphic inbred mapping strain Kaga. Here we present a reliable mapping panel, confirmed both by the assignment of the locus responsible for the medaka mutation eyeless/Rx3 to chromosome 12, and by the analysis of its resolution power using representative markers.J.-R. M.-M. was supported by an EMBO and Marie Curie postdoctoral fellowship. This work was supported by an EEC grant QLRT-2000-01460 (J.W.) and the HFSPO (JW).Peer reviewe

    Lung group 2 innate lymphoid cells differentially depend on local IL-7 for their distribution, activation, and maintenance in innate and adaptive immunity-mediated airway inflammation.

    No full text
    Interleukin-7 (IL-7) is a cytokine critical for the development and maintenance of group 2 innate lymphoid cells (ILC2s). ILC2s are resident in peripheral tissues such as the intestine and lung. However, whether IL-7 produced in the lung plays a role in the maintenance and function of lung ILC2s during airway inflammation remains unknown. IL-7 was expressed in bronchoalveolar epithelial cells and lymphatic endothelial cells (LECs). To investigate the role of local IL-7 in lung ILC2s, we generated two types of IL-7 conditional knockout (IL-7cKO) mice: Sftpc-Cre (SPC-Cre) IL-7cKO mice specific for bronchial epithelial cells and type 2 alveolar epithelial cells and Lyve1-Cre IL-7cKO mice specific for LECs. In steady state, ILC2s were located near airway epithelia, although lung ILC2s were unchanged in the two lines of IL-7cKO mice. In papain-induced airway inflammation dependent on innate immunity, lung ILC2s localized near bronchia via CCR4 expression, and eosinophil infiltration and type 2 cytokine production were reduced in SPC-Cre IL-7cKO mice. In contrast, in house dust mite (HDM)-induced airway inflammation dependent on adaptive immunity, lung ILC2s localized near lymphatic vessels via their CCR2 expression 2 weeks after the last challenge. Furthermore, lung ILC2s were decreased in Lyve1-Cre IL-7cKO mice in the HDM-induced inflammation because of decreased cell survival and proliferation. Finally, administration of anti-IL-7 antibody attenuated papain-induced inflammation by suppressing the activation of ILC2s. Thus, this study demonstrates that IL-7 produced by bronchoalveolar epithelial cells and LECs differentially controls the activation and maintenance of lung ILC2s, where they are localized in airway inflammation

    Liver type 1 innate lymphoid cells lacking IL-7 receptor are a native killer cell subset fostered by parenchymal niches

    Get PDF
    Group 1 innate lymphoid cells (G1-ILCs), including circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s), are innate immune sentinels critical for responses against infection and cancer. In contrast to relatively uniform NK cells through the body, diverse ILC1 subsets have been characterized across and within tissues in mice, but their developmental and functional heterogeneity remain unsolved. Here, using multimodal in vivo approaches including fate-mapping and targeting of the interleukin 15 (IL-15)-producing microenvironment, we demonstrate that liver parenchymal niches support the development of a cytotoxic ILC1 subset lacking IL-7 receptor (7 R− ILC1s). During ontogeny, fetal liver (FL) G1-ILCs arise perivascularly and then differentiate into 7 R− ILC1s within sinusoids. Hepatocyte-derived IL-15 supports parenchymal development of FL G1-ILCs to maintain adult pool of 7 R− ILC1s. IL-7R+ (7R+) ILC1s in the liver, candidate precursors for 7 R− ILC1s, are not essential for 7 R− ILC1 development in physiological conditions. Functionally, 7 R− ILC1s exhibit killing activity at steady state through granzyme B expression, which is underpinned by constitutive mTOR activity, unlike NK cells with exogenous stimulation-dependent cytotoxicity. Our study reveals the unique ontogeny and functions of liver-specific ILC1s, providing a detailed interpretation of ILC1 heterogeneity

    Glucocorticoids Drive Diurnal Oscillations in T Cell Distribution and Responses by Inducing Interleukin-7 Receptor and CXCR4

    Get PDF
    ステロイドが免疫力を高める --免疫の新たな昼夜サイクルを解明--. 京都大学プレスリリース. 2018-01-24.Glucocorticoids are steroid hormones with strong anti-inflammatory and immunosuppressive effects that are produced in a diurnal fashion. Although glucocorticoids have the potential to induce interleukin-7 receptor (IL-7R) expression in T cells, whether they control T cell homeostasis and responses at physiological concentrations remains unclear. We found that glucocorticoid receptor signaling induces IL-7R expression in mouse T cells by binding to an enhancer of the IL-7Ra locus, with a peak at midnight and a trough at midday. This diurnal induction of IL-7R supported the survival of T cells and their redistribution between lymph nodes, spleen, and blood by controlling expression of the chemokine receptor CXCR4. In mice, T cell accumulation in the spleen at night enhanced immune responses against soluble antigens and systemic bacterial infection. Our results reveal the immunoenhancing role of glucocorticoids in adaptive immunity and provide insight into how immune function is regulated by the diurnal rhythm
    corecore