52 research outputs found

    Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nomaki, H., Uejima, Y., Ogawa, N. O., Yamane, M., Watanabe, H. K., Senokuchi, R., Bernhard, J. M., Kitahashi, T., Miyairi, Y., Yokoyama, Y., Ohkouchi, N., & Shimanaga, M. Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses. Marine Ecology Progress Series, 622, (2019): 49-65, doi:10.3354/meps13053.Deep-sea hydrothermal vents host unique marine ecosystems that rely on organic matter produced by chemoautotrophic microbes together with phytodetritus. Although meiofauna can be abundant at such vents, the small size of meiofauna limits studies on nutritional sources. Here we investigated dietary sources of meio- and macrofauna at hydrothermal vent fields in the western North Pacific using stable carbon and nitrogen isotope ratios (δ13C, δ15N) and natural-abundance radiocarbon (Δ14C). Bacterial mats and Paralvinella spp. (polychaetes) collected from hydrothermal vent chimneys were enriched in 13C (up to -10‰) and depleted in 14C (-700 to -580‰). The δ13C and Δ14C values of dirivultid copepods, endemic to hydrothermal vent chimneys, were -11‰ and -661‰, respectively, and were similar to the values in the bacterial mats and Paralvinella spp. but distinct from those of nearby non-vent sediments (δ13C: ~-24‰) and water-column plankton (Δ14C: ~40‰). In contrast, δ13C values of nematodes from vent chimneys were similar to those of non-vent sites (ca. -25‰). Results suggest that dirivultids relied on vent chimney bacterial mats as their nutritional source, whereas vent nematodes did not obtain significant nutrient amounts from the chemolithoautotrophic microbes. The Δ14C values of Neoverruca intermedia (vent barnacle) suggest they gain nutrition from chemoautotrophic microbes, but the source of inorganic carbon was diluted with bottom water much more than those of the Paralvinella habitat, reflecting Neoverruca’s more distant distribution from active venting. The combination of stable and radioisotope analyses on hydrothermal vent organisms provides valuable information on their nutritional sources and, hence, their adaptive ecology to chemosynthesis-based ecosystems.We are grateful to the crews and scientists of the R/V ‘Natsushima’ and the ROV ‘Hyper-Dolphin’ of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) during the NT12-10, NT13-09 and NT14-06 cruises, and the R/V ‘Kaimei’ and the KM-ROV of JAMSTEC during the KM-ROV training cruise. We thank Yuki Iwadate for her help on sample preparations and 2 anonymous reviewers and the editor, who provided helpful comments on an earlier version of this manuscript. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Scientific Research C 26440246 to M.S.), the Japan Society for the Promotion of Science (Invitational fellowships for research in Japan, S14032 to J.M.B.), the WHOI Robert W. Morse Chair for Excellence in Oceanography, and The Investment in Science Fund at WHOI

    Meiofauna in the southeastern Bering Sea: community composition and structuring environmental factors

    Get PDF
    The Bering Sea is the second largest marginal sea in the North Pacific and is one of the areas with highest biological productivity in high-latitude waters. The continental shelf of the Bering Sea hosts large populations of marine mammals and fishery resources. However, the smaller organisms in benthic ecosystems, including meiofauna, have been largely overlooked in this area, despite their potential importance in ecosystem functioning and the resultant biogeochemical cycles. This study analyzed spatial differences in the total abundance and community structure of the metazoan meiofauna at five stations around the Bering Canyon, located at the southeastern margin of the Bering Sea. Their association with environmental factors in sediments was also studied. The results confirmed that the investigated stations had meiofaunal standing stocks that were comparable to those of other Arctic seas. Among the investigated sediment biological and geochemical parameters (total organic carbon, median grain size, prokaryotic cell numbers, etc.), multivariate analyses showed that the C/N of organic matter in sediments was the main factor associated with meiofaunal community structure

    A new dirivultid copepod (Siphonostomatoida) from hydrothermal vent fields of the Izu-Bonin Arc in the North Pacific Ocean

    No full text
    Uyeno, Daisuke, Shimanaga, Motohiro (2018): A new dirivultid copepod (Siphonostomatoida) from hydrothermal vent fields of the Izu-Bonin Arc in the North Pacific Ocean. Zootaxa 4415 (2): 381-389, DOI: https://doi.org/10.11646/zootaxa.4415.2.

    Report: Comparison of the efficiency of three methods of DNA extraction for deep-sea benthic copepods

    No full text
    corecore