127 research outputs found

    My Acceptance of Lawrence Durrell as a Japanese

    Get PDF

    Association between the tissue accumulation of advanced glycation end products and exercise capacity in cardiac rehabilitation patients

    Get PDF
    Background Advanced glycation end products (AGEs) are associated with aging, diabetes mellitus (DM), and other chronic diseases. Recently, the accumulation of AGEs can be evaluated by skin autofluorescence (SAF). However, the relationship between SAF levels and exercise capacity in patients with cardiovascular disease (CVD) remains unclear. This study aimed to investigate the association between the tissue accumulation of AGEs and clinical characteristics, including exercise capacity, in patients with CVD. Methods We enrolled 319 consecutive CVD patients aged >= 40 years who underwent early phase II cardiac rehabilitation (CR) at our university hospital between November 2015 and September 2017. Patient background, clinical data, and the accumulation of AGEs assessed by SAF were recorded at the beginning of CR. Characteristics were compared between two patient groups divided according to the median SAF level (High SAF and Low SAF). Results The High SAF group was significantly older and exhibited a higher prevalence of DM than the Low SAF group. The sex ratio did not differ between the two groups. AGE levels showed significant negative correlations with peak oxygen uptake and ventilator efficiency (both P <0.0001). Exercise capacity was significantly lower in the high SAF group than in the low SAF group, regardless of the presence or absence of DM (P <0.05). A multivariate logistic regression analysis showed that SAF level was an independent factor associated with reduced exercise capacity (odds ratio 2.10; 95% confidence interval 1.13-4.05; P = 0.02). Conclusion High levels of tissue accumulated AGEs, as assessed by SAF, were significantly and independently associated with reduced exercise capacity. These data suggest that measuring the tissue accumulation of AGEs may be useful in patients who have undergone CR, irrespective of whether they have DM

    Ex Vivo Gene Therapy Treats Bone Complications of Mucopolysaccharidosis Type II Mouse Models through Bone Remodeling Reactivation

    Get PDF
    Mucopolysaccharidosis type II is a disease caused by organ accumulation of glycosaminoglycans due to iduronate 2-sulfatase deficiency. This study investigated the pathophysiology of the bone complications associated with mucopolysaccharidosis II and the effect of lentivirus-mediated gene therapy of hematopoietic stem cells on bone lesions of mucopolysaccharidosis type II mouse models in comparison with enzyme replacement therapy. Bone volume, density, strength, and trabecular number were significantly higher in the untreated mucopolysaccharidosis type II mice than in wild-type mice. Accumulation of glycosaminoglycans caused reduced bone metabolism. Specifically, persistent high serum iduronate 2-sulfatase levels and release of glycosaminoglycans from osteoblasts and osteoclasts in mucopolysaccharidosis type II mice that had undergone gene therapy reactivated bone lineage remodeling, subsequently reducing bone mineral density, strength, and trabecular number to a similar degree as that observed in wild-type mice. Bone formation, resorption parameters, and mineral density in the diaphysis edge did not appear to have been affected by the irradiation administered as a pre-treatment for gene therapy. Hence, the therapeutic effect of gene therapy on the bone complications of mucopolysaccharidosis type II mice possibly outweighed that of enzyme replacement therapy in many aspects.Wada M., Shimada Y., Iizuka S., et al. Ex Vivo Gene Therapy Treats Bone Complications of Mucopolysaccharidosis Type II Mouse Models through Bone Remodeling Reactivation. Molecular Therapy - Methods and Clinical Development, 19, 261. https://doi.org/10.1016/j.omtm.2020.09.012

    Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks

    Get PDF
    Abstract The prefrontal cortex (PFC) is widely believed to subserve mental manipulation and monitoring processes ascribed to the central executive (CE) of working memory (WM). We attempted to examine and localize the CE by functional imaging of the frontal cortex during tasks designed to require the CE. Using near-infrared spectroscopy, we studied the spatiotemporal dynamics of oxygenated hemoglobin (oxy-Hb), an indicator of changes in regional cerebral blood flow, in both sides of lateral PFC during WM intensive tasks. In most participants, increases in oxy-Hb were localized within one subdivison during performance of the n-back task, whereas oxy-Hb increased more diffusely during the random number generation (RNG) task. Activation of the ventrolateral PFC (VLPFC) was prominent in the n-back task; both sustained and transient dynamics were observed. Transient dynamics means that oxy-Hb first increases but then decreases to less than 50% of the peak value or below the baseline level before the end of the task. For the RNG task sustained activity was also observed in the dorsolateral PFC (DLPFC), especially in the right hemisphere. However, details of patterns of activation varied across participants: subdivisions commonly activated during performance of the two tasks were the bilateral VLPFCs, either side of the VLPFC, and either side of the DLPFC in 4, 2, and 4 of the 12 participants, respectively. The remaining 2 of the 12 participants had no regions commonly activated by these tasks. These results suggest that although the PFC is implicated in the CE, there is no stereotyped anatomical PFC substrate for the CE
    • …
    corecore