3,621 research outputs found

    Retraction notice: Influence of compressing pressure on macro void formation carbon monolith for methane adsorption

    Get PDF
    RETRACTION NOTICEOn 21rd February 2019, the Editorial Board of the Mongolian Journal of Chemistry decided to retract this article entitled "Influence of compressing pressure on macro void formation of carbon monolith for methane adsorption" because of an authorship dispute. The article was originally published in Vol.18 No.44 2017 pp.24-35. doi: https://doi.org/10.5564/mjc.v18i44.93

    Influence of compressing pressure on macro void formation of carbon monolith for methane adsorption

    Get PDF
    Carbon monoliths for adsorbed natural gas (ANG) storage were prepared from Mongolian anthracite-based activated carbons using carboxy-methyl cellulose as a binder under different compressing pressures. Nitrogen adsorption/desorption experiments were carried out to obtain the specific surface area, pore volume, and pore size distribution of the monoliths.  Methane adsorption experiments on the carbon monoliths were conducted at different temperatures and pressures up to around 3.5 MPa in a high pressure volumetric adsorption apparatus. As expected, adsorption results indicated that the methane adsorption capacity of the carbon monoliths increased with increasing specific surface area and packing density.  The maximum volumetric adsorption of methane was observed as 163 V/V at 293 K and 3.5 MPa on a carbon monolith sample, PMAC1/2-3-65, that does not have the highest specific surface area but relatively high packing density comparing with other monoliths, which implies that two physical properties contribute contradictorily to the methane adsorption capacity.  Based on experimental results, the carbon monoliths prepared from Mongolian anthracite-based activated carbons can be promising media for ANG storage application

    Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO

    Get PDF
    Massive MIMO is a promising technique for future 5G communications due to its high spectrum and energy efficiency. To realize its potential performance gain, accurate channel estimation is essential. However, due to massive number of antennas at the base station (BS), the pilot overhead required by conventional channel estimation schemes will be unaffordable, especially for frequency division duplex (FDD) massive MIMO. To overcome this problem, we propose a structured compressive sensing (SCS)-based spatio-temporal joint channel estimation scheme to reduce the required pilot overhead, whereby the spatio-temporal common sparsity of delay-domain MIMO channels is leveraged. Particularly, we first propose the nonorthogonal pilots at the BS under the framework of CS theory to reduce the required pilot overhead. Then, an adaptive structured subspace pursuit (ASSP) algorithm at the user is proposed to jointly estimate channels associated with multiple OFDM symbols from the limited number of pilots, whereby the spatio-temporal common sparsity of MIMO channels is exploited to improve the channel estimation accuracy. Moreover, by exploiting the temporal channel correlation, we propose a space-time adaptive pilot scheme to further reduce the pilot overhead. Additionally, we discuss the proposed channel estimation scheme in multicell scenario. Simulation results demonstrate that the proposed scheme can accurately estimate channels with the reduced pilot overhead, and it is capable of approaching the optimal oracle least squares estimator

    Electronic structure of YbB6_{6}: Is it a Topological Insulator or not?

    Full text link
    To resolve the controversial issue of the topological nature of the electronic structure of YbB6_{6}, we have made a combined study using density functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES). Accurate determination of the low energy band topology in DFT requires the use of modified Becke-Johnson exchange potential incorporating the spin-orbit coupling and the on-site Coulomb interaction UU of Yb 4f4f electrons as large as 7 eV. We have double-checked the DFT result with the more precise GW band calculation. ARPES is done with the non-polar (110) surface termination to avoid band bending and quantum well confinement that have confused ARPES spectra taken on the polar (001) surface termination. Thereby we show definitively that YbB6_{6} has a topologically trivial B 2pp-Yb 5dd semiconductor band gap, and hence is a non-Kondo non-topological insulator (TI). In agreement with theory, ARPES shows pure divalency for Yb and a pp-dd band gap of 0.3 eV, which clearly rules out both of the previous scenarios of ff-dd band inversion Kondo TI and pp-dd band inversion non-Kondo TI. We have also examined the pressure-dependent electronic structure of YbB6_{6}, and found that the high pressure phase is not a Kondo TI but a \emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary information contains 6 figures. 11 pages, 10 figures in total To be appeared in Phys. Rev. Lett. (Online publication is around March 16 if no delays.

    Electronic structures of Zn1x_{1-x}Cox_xO using photoemission and x-ray absorption spectroscopy

    Full text link
    Electronic structures of Zn1x_{1-x}Cox_xO have been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Co 3d states are found to lie near the top of the O 2p2p valence band, with a peak around 3\sim 3 eV binding energy. The Co 2p2p XAS spectrum provides evidence that the Co ions in Zn1x_{1-x}Cox_{x}O are in the divalent Co2+^{2+} (d7d^7) states under the tetrahedral symmetry. Our finding indicates that the properly substituted Co ions for Zn sites will not produce the diluted ferromagnetic semiconductor property.Comment: 3 pages, 2 figure

    AMOD: a morpholino oligonucleotide selection tool

    Get PDF
    AMOD is a web-based program that aids in the functional evaluation of nucleotide sequences through sequence characterization and antisense morpholino oligonucleotide (target site) selection. Submitted sequences are analyzed by translation initiation site prediction algorithms and sequence-to-sequence comparisons; results are used to characterize sequence features required for morpholino design. Within a defined subsequence, base composition and homodimerization values are computed for all putative morpholino oligonucleotides. Using these properties, morpholino candidates are selected and compared with genomic and transcriptome databases with the goal to identify target-specific enriched morpholinos. AMOD has been used at the University of Minnesota to design ∼200 morpholinos for a functional genomics screen in zebrafish. The AMOD web server and a tutorial are freely available to both academic and commercial users at

    Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors

    Full text link
    Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations [B.C. Goodwin, Temporal Oscillations in Cells, (Academic Press, New York, 1963)] in the simple form recently applied to single gene systems and some operon cases [H. De Jong, J. Comp. Biol. 9, 67 (2002)], which involves the dynamics of the mRNA, given protein, and metabolite concentrations. Further, we present results for a three gene case in co-regulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and also we managed to filter the noisy output of the biological systemComment: 21 pages, 7 figures; also selected in vjbio of August 2005; this version corrects a misorder in the last three references of the published versio

    Superconductivity Near Ferromagnetism in MgCNi3

    Full text link
    An unusual quasi-two-dimensional heavy band mass van Hove singularity (vHs) lies very near the Fermi energy in MgCNi3, recently reported to superconduct at 8.5 K. This compound is strongly exchange enhanced and is unstable to ferromagnetism upon hole doping with 12% Mg --> Na or Li. The 1/4-depleted fcc (frustrated) Ni sublattice and lack of Fermi surface nesting argues against competing antiferromagnetic and charge density wave instabilities. We identify an essentially infinite mass along the M-Gamma line, leading to quasi-two-dimensionality of this vHs may promote unconventional p-wave pairing that could coexist with superconductivity.Comment: 4 two-column pages, 4 figure
    corecore