5,797 research outputs found

    Electronic Structures of Antiperovskite Superconductor MgCNi3_3 and Related Compounds

    Full text link
    Electronic structure of a newly discovered antiperovskite superconductor MgCNi3_3 is investigated by using the LMTO band method. The main contribution to the density of states (DOS) at the Fermi energy EFE_{\rm F} comes from Ni 3dd states which are hybridized with C 2pp states. The DOS at EFE_{\rm F} is varied substantially by the hole or electron doping due to the very high and narrow DOS peak located just below EFE_{\rm F}. We have also explored electronic structures of C-site and Mg-site doped MgCNi3_3 systems, and described the superconductivity in terms of the conventional phonon mechanism.Comment: 3 pages, presented at ORBITAL2001 September 11-14, 2001 (Sendai, JAPAN

    Electronic structures of antiperovskite superconductors: MgXNi3_3 (X=B,C,N)

    Full text link
    We have investigated electronic structures of a newly discovered antiperovskite superconductor MgCNi3_3 and related compounds MgBNi3_3 and MgNNi3_3. In MgCNi3_3, a peak of very narrow and high density of states is located just below EF\rm E_F, which corresponds to the π\pi^* antibonding state of Ni-3d and C-2p2p but with the predominant Ni-3d character. The prominent nesting feature is observed in the Γ\Gamma-centered electron Fermi surface of an octahedron-cage-like shape that originates from the 19th band. The estimated superconducting parameters based on the simple rigid-ion approximation are in reasonable agreement with experiment, suggesting that the superconductivity in MgCNi3_3 is described well by the conventional phonon mechanism.Comment: 5 pages, 5 figure

    Electronic structure of metallic antiperovskite compound GaCMn3_3

    Full text link
    We have investigated electronic structures of antiperovskite GaCMn3_3 and related Mn compounds SnCMn3_3, ZnCMn3_3, and ZnNMn3_3. In the paramagnetic state of GaCMn3_3, the Fermi surface nesting feature along the ΓR\Gamma{\rm R} direction is observed, which induces the antiferromagnetic (AFM) spin ordering with the nesting vector {\bf Q} ΓR\sim \Gamma{\rm R}. Calculated susceptibilities confirm the nesting scenario for GaCMn3_3 and also explain various magnetic structures of other antiperovskite compounds. Through the band folding effect, the AFM phase of GaCMn3_3 is stabilized. Nearly equal densities of states at the Fermi level in the ferromagnetic and AFM phases of GaCMn3_3 indicate that two phases are competing in the ground state.Comment: 4 pages, 5 figure

    Modelling the Localized to Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5

    Full text link
    We address the fundamental question of crossover from localized to itinerant state of a paradigmatic heavy fermionmaterial CeIrIn5. The temperature evolution of the one electron spectra and the optical conductivity is predicted from first principles calculation. The buildup of coherence in the form of a dispersive many body feature is followed in detail and its effects on the conduction electrons and optical conductivity of the material is revealed. We find multiple hybridization gaps and link them to the crystal structure of the material. Our theoretical approach explains the multiple peak structures observed in optical experiments and the sensitivity of CeIrIn5 to substitutions of the transition metal element and may provide a microscopic basis for the more phenomenological descriptions currently used to interpret experiments in heavy fermion systems.Comment: 12 pages, 3 figure

    A method for extracting emotion using colors comprise the painting image

    Get PDF
    Paintings can evoke emotions in viewers. In this paper, we propose a method for extracting emotions from paintings by using the colors that comprise the paintings. The proposed approach is based on a color image scale, which is one of the popular experimental scales focusing on the relation between colors and emotions. We first construct a color combination and emotional word dataset. To this end, we create a color spectrum from the input painting. We then search for the best matching color combination from the dataset, which is most similar to the color spectrum. The best matching color combination is mapped to the corresponding emotional word. Afterward, we extract the emotional word as the emotion evoked by the painting. To evaluate the proposed method, we compared the results of the proposed algorithm to those of a user study on the extraction of emotions from several paintings. Through several experiments, we show that the proposed method exhibits excellent performance with respect to predicting the emotions evoked by a painting. Finally, we propose an image exploration system based on the emotion extraction method mentioned above. In this system, users can explore painting images emotionally coherently

    Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5

    Full text link
    In Cerium-based heavy electron materials, the 4f electron's magnetic moments bind to the itinerant quasiparticles to form composite heavy quasiparticles at low temperature. The volume of the Fermi surfacein the Brillouin zone incorporates the moments to produce a "large FS" due to the Luttinger theorem. When the 4f electrons are localized free moments, a "small FS" is induced since it contains only broad bands of conduction spd electrons. We have addressed theoretically the evolution of the heavy fermion FS as a function of temperature, using a first principles dynamical mean-field theory (DMFT) approach combined with density functional theory (DFT+DMFT). We focus on the archetypical heavy electrons in CeIrIn5, which is believed to be near a quantum critical point. Upon cooling, both the quantum oscillation frequencies and cyclotron masses show logarithmic scaling behavior (~ ln(T_0/T)) with different characteristic temperatures T_0 = 130 and 50 K, respectively. The resistivity coherence peak observed at T ~ 50 K is the result of the competition between the binding of incoherent 4f electrons to the spd conduction electrons at Fermi level and the formation of coherent 4f electrons.Comment: 5 pages main article,3 figures for the main article, 2 page Supplementary information, 2 figures for the Supplementary information. Supplementary movie 1 and 2 are provided on the webpage(http://www-ph.postech.ac.kr/~win/supple.html

    X-ray absorption branching ratio in actinides: LDA+DMFT approach

    Full text link
    To investigate the x-ray absorption (XAS) branching ratio from the core 4d to valence 5f states, we set up a theoretical framework by using a combination of density functional theory in the local density approximation and Dynamical Mean Field Theory (LDA+DMFT), and apply it to several actinides. The results of the LDA+DMFT reduces to the band limit for itinerant systems and to the atomic limit for localized f electrons, meaning a spectrum of 5f itinerancy can be investigated. Our results provides a consistent and unified view of the XAS branching ratio for all elemental actinides, and is in good overall agreement with experiments.Comment: 6 pages, 4 figure

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage
    corecore