5,818 research outputs found
Electronic Structures of Antiperovskite Superconductor MgCNi and Related Compounds
Electronic structure of a newly discovered antiperovskite superconductor
MgCNi is investigated by using the LMTO band method. The main contribution
to the density of states (DOS) at the Fermi energy comes from Ni
3 states which are hybridized with C 2 states. The DOS at is
varied substantially by the hole or electron doping due to the very high and
narrow DOS peak located just below . We have also explored
electronic structures of C-site and Mg-site doped MgCNi systems, and
described the superconductivity in terms of the conventional phonon mechanism.Comment: 3 pages, presented at ORBITAL2001 September 11-14, 2001 (Sendai,
JAPAN
Electronic structures of antiperovskite superconductors: MgXNi (X=B,C,N)
We have investigated electronic structures of a newly discovered
antiperovskite superconductor MgCNi and related compounds MgBNi and
MgNNi. In MgCNi, a peak of very narrow and high density of states is
located just below , which corresponds to the antibonding
state of Ni-3d and C- but with the predominant Ni-3d character. The
prominent nesting feature is observed in the -centered electron Fermi
surface of an octahedron-cage-like shape that originates from the 19th band.
The estimated superconducting parameters based on the simple rigid-ion
approximation are in reasonable agreement with experiment, suggesting that the
superconductivity in MgCNi is described well by the conventional phonon
mechanism.Comment: 5 pages, 5 figure
Electronic structure of metallic antiperovskite compound GaCMn
We have investigated electronic structures of antiperovskite GaCMn and
related Mn compounds SnCMn, ZnCMn, and ZnNMn. In the paramagnetic
state of GaCMn, the Fermi surface nesting feature along the
direction is observed, which induces the antiferromagnetic (AFM) spin ordering
with the nesting vector {\bf Q} . Calculated
susceptibilities confirm the nesting scenario for GaCMn and also explain
various magnetic structures of other antiperovskite compounds. Through the band
folding effect, the AFM phase of GaCMn is stabilized. Nearly equal
densities of states at the Fermi level in the ferromagnetic and AFM phases of
GaCMn indicate that two phases are competing in the ground state.Comment: 4 pages, 5 figure
Modelling the Localized to Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5
We address the fundamental question of crossover from localized to itinerant
state of a paradigmatic heavy fermionmaterial CeIrIn5. The temperature
evolution of the one electron spectra and the optical conductivity is predicted
from first principles calculation. The buildup of coherence in the form of a
dispersive many body feature is followed in detail and its effects on the
conduction electrons and optical conductivity of the material is revealed. We
find multiple hybridization gaps and link them to the crystal structure of the
material. Our theoretical approach explains the multiple peak structures
observed in optical experiments and the sensitivity of CeIrIn5 to substitutions
of the transition metal element and may provide a microscopic basis for the
more phenomenological descriptions currently used to interpret experiments in
heavy fermion systems.Comment: 12 pages, 3 figure
A method for extracting emotion using colors comprise the painting image
Paintings can evoke emotions in viewers. In this paper, we propose a method for extracting emotions from paintings by using the colors that comprise the paintings. The proposed approach is based on a color image scale, which is one of the popular experimental scales focusing on the relation between colors and emotions. We first construct a color combination and emotional word dataset. To this end, we create a color spectrum from the input painting. We then search for the best matching color combination from the dataset, which is most similar to the color spectrum. The best matching color combination is mapped to the corresponding emotional word. Afterward, we extract the emotional word as the emotion evoked by the painting. To evaluate the proposed method, we compared the results of the proposed algorithm to those of a user study on the extraction of emotions from several paintings. Through several experiments, we show that the proposed method exhibits excellent performance with respect to predicting the emotions evoked by a painting. Finally, we propose an image exploration system based on the emotion extraction method mentioned above. In this system, users can explore painting images emotionally coherently
Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5
In Cerium-based heavy electron materials, the 4f electron's magnetic moments
bind to the itinerant quasiparticles to form composite heavy quasiparticles at
low temperature. The volume of the Fermi surfacein the Brillouin zone
incorporates the moments to produce a "large FS" due to the Luttinger theorem.
When the 4f electrons are localized free moments, a "small FS" is induced since
it contains only broad bands of conduction spd electrons. We have addressed
theoretically the evolution of the heavy fermion FS as a function of
temperature, using a first principles dynamical mean-field theory (DMFT)
approach combined with density functional theory (DFT+DMFT). We focus on the
archetypical heavy electrons in CeIrIn5, which is believed to be near a quantum
critical point. Upon cooling, both the quantum oscillation frequencies and
cyclotron masses show logarithmic scaling behavior (~ ln(T_0/T)) with different
characteristic temperatures T_0 = 130 and 50 K, respectively. The resistivity
coherence peak observed at T ~ 50 K is the result of the competition between
the binding of incoherent 4f electrons to the spd conduction electrons at Fermi
level and the formation of coherent 4f electrons.Comment: 5 pages main article,3 figures for the main article, 2 page
Supplementary information, 2 figures for the Supplementary information.
Supplementary movie 1 and 2 are provided on the
webpage(http://www-ph.postech.ac.kr/~win/supple.html
X-ray absorption branching ratio in actinides: LDA+DMFT approach
To investigate the x-ray absorption (XAS) branching ratio from the core 4d to
valence 5f states, we set up a theoretical framework by using a combination of
density functional theory in the local density approximation and Dynamical Mean
Field Theory (LDA+DMFT), and apply it to several actinides. The results of the
LDA+DMFT reduces to the band limit for itinerant systems and to the atomic
limit for localized f electrons, meaning a spectrum of 5f itinerancy can be
investigated. Our results provides a consistent and unified view of the XAS
branching ratio for all elemental actinides, and is in good overall agreement
with experiments.Comment: 6 pages, 4 figure
Chaotic exploration and learning of locomotion behaviours
We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage
- …