6 research outputs found

    Reading Single DNA with DNA Polymerase Followed by Atomic Force Microscopy

    Get PDF
    The importance of DNA sequencing in the life sciences and personalized medicine is continually increasing. Single-molecule sequencing methods have been developed to analyze DNA directly without the need for amplification. Here, we present a new approach to sequencing single DNA molecules using atomic force microscopy (AFM). In our approach, four surface conjugated nucleotides were examined sequentially with a DNA polymerase immobilized AFM tip. By observing the specific rupture events upon examination of a matching nucleotide, we could determine the template base bound in the polymerase's active site. The subsequent incorporation of the complementary base in solution enabled the next base to be read. Additionally, we observed that the DNA polymerase could incorporate the surface-conjugated dGTP when the applied force was controlled by employing the force-clamp mode.X1114Ysciescopu

    Spectrum of movement disorders in GNAO1 encephalopathy: in-depth phenotyping and case-by-case analysis

    Get PDF
    Background GNAO1 encephalopathy is a rare neurodevelopmental disorder characterized by distinct movement presentations and early onset epileptic encephalopathy. Here, we report the in-depth phenotyping of genetically confirmed patients with GNAO1 encephalopathy, focusing on movement presentations. Results Six patients who participated in Korean Undiagnosed Disease Program were diagnosed to have pathogenic or likely pathogenic variants in GNAO1 using whole exome sequencing. All medical records and personal video clips were analyzed with a literature review. Three of the 6 patients were male. Median follow-up duration was 41 months (range 7–78 months) and age at last examination was 7.4 years (range 3.3–16.9 years). Initial complaints were hypotonia or developmental delay in 5 and right-hand clumsiness in 1 patient, which were noticed at median age of 3 months (range 0–75 months). All patients showed global developmental delay and 4 had severely retarded development. Five patients (5/6, 83.3%) had many different movement symptoms with various onset and progression. The symptoms included stereotyped hands movement, non-epileptic myoclonus, dyskinesia, dystonia and choreoathetosis. Whole exome sequencing identified 6 different variants in GNAO1. Three were novel de novo variants and atypical presentation was noted in a patient. One variant turned out to be inherited from patients mother who had mosaic variant. Distinct and characteristics movement phenotypes in patients with variant p.Glu246Lys and p.Arg209His were elucidated by in-depth phenotyping and literature review. Conclusions We reported 6 patients with GNAO1 encephalopathy showing an extremely diverse clinical spectrum on video. Some characteristic movement features identified by careful inspection may also provide important diagnostic insight and practice guidelines.This study was supported by a research program funded by the Korea Centers for Disease Control and Prevention (Grant No. 2018-ER6901-02)

    Reading Single DNA with DNA Polymerase Followed by Atomic Force Microscopy

    No full text
    The importance of DNA sequencing in the life sciences and personalized medicine is continually increasing. Single-molecule sequencing methods have been developed to analyze DNA directly without the need for amplification. Here, we present a new approach to sequencing single DNA molecules using atomic force microscopy (AFM). In our approach, four surface-conjugated nucleotides were examined sequentially with a DNA polymerase-immobilized AFM tip. By observing the specific rupture events upon examination of a matching nucleotide, we could determine the template base bound in the polymerase’s active site. The subsequent incorporation of the complementary base in solution enabled the next base to be read. Additionally, we observed that the DNA polymerase could incorporate the surface-conjugated dGTP when the applied force was controlled by employing the force-clamp mode

    The Korean undiagnosed diseases program phase I: expansion of the nationwide network and the development of long-term infrastructure

    Get PDF
    Background Phase I of the Korean Undiagnosed Diseases Program (KUDP), performed for 3 years, has been completed. The Phase I program aimed to solve the problem of undiagnosed patients throughout the country and develop infrastructure, including a data management system and functional core laboratory, for long-term translational research. Herein, we share the clinical experiences of the Phase I program and introduce the activities of the functional core laboratory and data management system. Results During the program (2018-2020), 458 patients were enrolled and classified into 3 groups according to the following criteria: (I) those with a specific clinical assessment which can be verified by direct testing (32 patients); (II) those with a disease group with genetic and phenotypic heterogeneity (353 patients); and (III) those with atypical presentations or diseases unknown to date (73 patients). All patients underwent individualized diagnostic processes based on the decision of an expert consortium. Confirmative diagnoses were obtained for 242 patients (52.8%). The diagnostic yield was different for each group: 81.3% for Group I, 53.3% for Group II, and 38.4% for Group III. Diagnoses were made by next-generation sequencing for 204 patients (84.3%) and other genetic testing for 35 patients (14.5%). Three patients (1.2%) were diagnosed with nongenetic disorders. The KUDP functional core laboratory, with a group of experts, organized a streamlined research pipeline covering various resources, including animal models, stem cells, structural modeling and metabolic and biochemical approaches. Regular data review was performed to screen for candidate genes among undiagnosed patients, and six different genes were identified for functional research. We also developed a web-based database system that supports clinical cohort management and provides a matchmaker exchange protocol based on a matchbox, likely to reinforce the nationwide clinical network and further international collaboration. Conclusions The KUDP evaluated the unmet needs of undiagnosed patients and established infrastructure for a data-sharing system and future functional research. The advancement of the KUDP may lead to sustainable bench-to-bedside research in Korea and contribute to ongoing international collaboration.11Nsciescopu
    corecore