29 research outputs found

    Machine learning-based predictive model for prevention of metabolic syndrome

    Get PDF
    Metabolic syndrome (MetS) is a chronic disease caused by obesity, high blood pressure, high blood sugar, and dyslipidemia and may lead to cardiovascular disease or type 2 diabetes. Therefore, the detection and prevention of MetS at an early stage are imperative. Individuals can detect MetS early and manage it effectively if they can easily monitor their health status in their daily lives. In this study, a predictive model for MetS was developed utilizing solely noninvasive information, thereby facilitating its practical application in real-world scenarios. The model\u27s construction deliberately excluded three features requiring blood testing, specifically those for triglycerides, blood sugar, and HDL cholesterol. We used a large-scale Korean health examination dataset (n = 70, 370; the prevalence of MetS = 13.6%) to develop the predictive model. To obtain informative features, we developed three novel synthetic features from four basic information: waist circumference, systolic and diastolic blood pressure, and gender. We tested several classification algorithms and confirmed that the decision tree model is the most appropriate for the practical prediction of MetS. The proposed model achieved good performance, with an AUC of 0.889, a recall of 0.855, and a specificity of 0.773. It uses only four base features, which results in simplicity and easy interpretability of the model. In addition, we performed calibrations on the prediction probability and calibrated the model. Therefore, the proposed model can provide MetS diagnosis and risk prediction results. We also proposed a MetS risk map such that individuals could easily determine whether they had metabolic syndrome

    Red photoluminescence and blue-shift caused by phase transformation in multilayer films of titanium dioxide and zinc sulfide

    Get PDF
    The most versatile methods for altering the properties and behavior of materials involve a phase transformation in the solid state. In this article, we report multilayered films of ZnS/TiO2/ZnS on amorphous SiOx/Si substrates by pulsed laser deposition (PLD). After sequential vacuum annealing at various temperatures, we investigated the effects of TiO2 on the phase transformation of ZnS films and the consequential changes in photoluminescence (PL) property. PL spectra of the film revealed red emission centered at 686 nm after annealing at 600°C, however, this emission disappears, and the color shifts to blue after annealing at 700°C. Detailed analysis identified that TiO2 acts as a catalytic agent for the phase transformation of ZnS at this temperature, and that the color shift to blue resulted from decreased red emissions attributed to oxygen in the film. The present results show that catalytic agent-mediated phase transformation has strong potential for the modification of material properties. © 2015 Optical Society of America.1

    Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors

    Get PDF
    An intrinsically stretchable rubbery semiconductor with high mobility is critical to the realization of high-performance stretchable electronics and integrated devices for many applications where large mechanical deformation or stretching is involved. Here, we report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility, obtained by introducing metallic carbon nanotubes into a rubbery semiconductor composite. This enhancement in effective carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance. Transistors and their arrays fully based on intrinsically stretchable electronic materials were developed, and they retained electrical performances without substantial loss when subjected to 50% stretching. Fully rubbery integrated electronics and logic gates were developed, and they also functioned reliably upon mechanical stretching. A rubbery active matrix based elastic tactile sensing skin to map physical touch was demonstrated to illustrate one of the applications

    Optical and photoelectric properties of Mn-doped ZnS thin film on a flexible indium-tin-oxide/polyethylene terephthalate substrate prepared by pulsed laser deposition

    Get PDF
    Optical and photoelectric properties of Mn-doped ZnS thin films on indium-tin-oxide (ITO)/polyethylene terephthalate (PET) substrates by pulsed laser deposition (PLD) were investigated. The XRD patterns revealed that the thin film deposited at room temperature (RT) had a wurtzite phase, which changed to a sphalerite phase at a substrate temperature of approximately 100°C. The transmittance of the films was approximately 87% in the visible range. The optical bandgap of the film deposited at RT was 3.29 eV, which increased to 3.361 eV with increasing substrate temperature to 200°C. The photoluminescence (PL) intensity at 468 nm and the photocurrent by UV irradiation increased in proportion to the substrate temperature. The present results imply that Mn-doped ZnS films deposited on flexible PET substrates are useful for fabricating flexible optoelectronic devices such as flexible UV detectors. © 2016 Optical Society of America.1

    Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems

    Get PDF
    Artificial synaptic devices that can be stretched similar to those appearing in soft-bodied animals, such as earthworms, could be seamlessly integrated onto soft machines toward enabled neurological functions. Here, we report a stretchable synaptic transistor fully based on elastomeric electronic materials, which exhibits a full set of synaptic characteristics. These characteristics retained even the rubbery synapse that is stretched by 50%. By implementing stretchable synaptic transistor with mechanoreceptor in an array format, we developed a deformable sensory skin, where the mechanoreceptors interface the external stimulations and generate presynaptic pulses and then the synaptic transistors render postsynaptic potentials. Furthermore, we demonstrated a soft adaptive neurorobot that is able to perform adaptive locomotion based on robotic memory in a programmable manner upon physically tapping the skin. Our rubbery synaptic transistor and neurologically integrated devices pave the way toward enabled neurological functions in soft machines and other applications

    Patternable and Widely Colour-Tunable Elastomer-Based Electroluminescent Devices

    Get PDF
    Abstract We demonstrate wide colour tunability of polydimethylsiloxane-based alternating-current-driven electroluminescent devices with intrinsically stretchable characteristics achieved by simply modulating the electrical frequency. By employing both a screen-printed emitting layer and frequency-dependent colour tuning of ZnS:Cu-based phosphors, we demonstrate various coloured patterned images in a single device. We also show enhanced colour-tuning performance by mixing multi-colour phosphors, which results in a broad range of available coordinates in colour space. We believe that our demonstrated method could be used for manipulating broader colour expression as well as in various applications involving stretchable devices

    Vision Guided Robotic System for Bone Drilling Based on Rolling Friction

    No full text
    Drilling procedures to the bone are frequently conducted with CT in the various surgical fields. The proposed vision guided robotic system provides orientation alignment of the drill-tip and automatic drilling to the target. The feasibility of the proposed robotic system was demonstrated by ex-vivo drilling tests on swine femur

    Compact Bone Surgery Robot With a High-Resolution and High-Rigidity Remote Center of Motion Mechanism

    No full text
    Objective: Two important and difficult tasks during a bone drilling procedure are guiding the orientation of the drilling axis toward the target and maintaining the orientation against the drilling force. To accomplish these tasks, a remote center of motion (RCM) mechanism is adopted to align the orientation of the drilling axis without changing the entry point. However, existing RCM mechanisms do not provide sufficient resolution and rigidity to address hard tissue cases. Methods: We propose a new type of RCM mechanism that uses two sets of linear actuators and a gearless-arc guide to have a high resolution and rigidity. In addition, we designed a single motor-based drilling mechanism based on rolling friction. To achieve automatic control of the guiding and drilling process, we incorporated a computer-tomography-based navigation system that was equipped with an optical tracking system. Results: The effectiveness of the integrated robotic system was demonstrated through a series of experiments and ex vivo drilling tests on swine femurs. The proposed robotic system withstood a maximum external force of 51 N to maintain the joint angle, and the average drilling error was less than 1.2 mm. Conclusion: This study confirms the feasibility of the proposed bone drilling robotic system with a high-resolution and high-rigidity RCM mechanism. Significance: This drilling system is the first successful trial based on an RCM mechanism and a single motor-based drilling mechanism, reducing the footprint and required motors with respect to previous bone surgical robots. © 1964-2012 IEEE.1
    corecore