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Abstract

Metabolic syndrome (MetS) is a chronic disease caused by obesity, high blood pressure,

high blood sugar, and dyslipidemia and may lead to cardiovascular disease or type 2 diabe-

tes. Therefore, the detection and prevention of MetS at an early stage are imperative. Indi-

viduals can detect MetS early and manage it effectively if they can easily monitor their

health status in their daily lives. In this study, a predictive model for MetS was developed uti-

lizing solely noninvasive information, thereby facilitating its practical application in real-world

scenarios. The model’s construction deliberately excluded three features requiring blood

testing, specifically those for triglycerides, blood sugar, and HDL cholesterol. We used a

large-scale Korean health examination dataset (n = 70, 370; the prevalence of MetS =

13.6%) to develop the predictive model. To obtain informative features, we developed three

novel synthetic features from four basic information: waist circumference, systolic and dia-

stolic blood pressure, and gender. We tested several classification algorithms and con-

firmed that the decision tree model is the most appropriate for the practical prediction of

MetS. The proposed model achieved good performance, with an AUC of 0.889, a recall of

0.855, and a specificity of 0.773. It uses only four base features, which results in simplicity

and easy interpretability of the model. In addition, we performed calibrations on the predic-

tion probability and calibrated the model. Therefore, the proposed model can provide MetS

diagnosis and risk prediction results. We also proposed a MetS risk map such that individu-

als could easily determine whether they had metabolic syndrome.

Introduction

Metabolic syndrome (MetS) is a chronic disease caused by obesity, high blood pressure, hyper-

glycemia, and dyslipidemia [1]. Although there are slight differences in the details, there are

five common risk factors: fasting plasma glucose, blood pressure, triglycerides, high-density

lipoprotein cholesterol, and waist circumference. MetS is diagnosed if more than three factors

among these are abnormal [1]. MetS has emerged as a major public health concern worldwide

owing to the prevalence of MetS in adults in many urbanized countries steadily increasing to

20–30%. Furthermore, MetS increases the risk of cardiovascular disease and type 2 diabetes

[2]. The prevalence of MetS in South Korea adults was reported to be 22.9% in 2018 [3].
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To improve this situation, noninvasive predictive studies have been conducted to easily

detect and prevent MetS early. Noninvasive predictive models do not use invasive information

obtained by penetrating the body or skin, such as blood tests, so continuous monitoring is pos-

sible at a simple, fast, and low cost. Noninvasive predictive studies have been published mainly

in European and Asian countries [4–12]. Since 2015, many noninvasive studies have been con-

ducted, and each study was conducted using samples of various nationalities, sizes, age groups,

and prevalence (Table 1).

Most studies have been conducted on lifestyle-related and anthropometric features [4–

7,9,11,13]. Gutiérrez-Esparza [13] attempted to find important features in lifestyle-related

information. Gutiérrez-Esparza [13] viewed gender as an important factor and performed fea-

ture selection and model composition. However, in the final models, anthropometric features

were evaluated as the main features, and although some lifestyle features were included in the

final model, their roles were not significant [4,5]. The number of features used in the predictive

models was between 4 and 17; more features tended to be used when lifestyle features were

included, and the model became more complex.

The overall performance of the models was between 0.84 and 0.93 in terms of AUC, and

most of them tended to have higher specificity than recall. Wang’s study [6], which showed the

best performance (AUC 0.93) using an artificial neural network, was characterized by the

cumulative use of longitudinal data collected three times to increase performance. Fifteen fea-

tures were used for prediction, including features of lifestyle and socioeconomic status, as well

as physical features (waist circumference, age, and sex).

From an algorithmic point of view, interpretable models, such as decision trees (DTs) and

logistic regression (LR), were half of the previous studies presented in Table 1, and the other

half were hard-to-interpret black box models, such as ensembles, artificial neural networks,

and random forests. Romero-Saldaña [9,10] constructed a simple rule-based decision tree

using only the waist-to-height ratio and blood pressure. The AUC was not reported, and the

specificity was quite high at 0.9 or higher, while the recall was low at 0.55 and 0.78. However,

calibrations for the predictive probabilities were not evaluated, focusing only on classification

performance. Datta [8] and Wang [6] performed calibrations, achieving good results in terms

Table 1. Summary of previous studies on MetS prediction using noninvasive information.

Year First

author

Country Sample

size

Age

(Mean)

MetS

(%)

Classifier Feature

(Lifestyle)

AUC/Recall/Specificity/Calibration

2008 Kroon [12] Netherlands 642 23.1 7.5 DT 4(N) - - - N

2015 Hsiung [11] Taiwan 154 50.8 40.3 LR 3(N) - - - N

2016 Romero-Saldaña [10] Spain 1,185 45.1 14.9 DT 5(N) - 0.78 0.92 N

2018 Romero-Saldaña [9] Spain 60,799 40.0 9.0 DT 5(N) - 0.55 0.95 N

2019 Datta [8] Germany 2,314 55.2 40.7 EN 8�(N) 0.90 - - Y

2020 Eyvazlou [7] Iran 468 40.3 37.6 ANN 17�(Y) - 0.83 0.92 N

2020 Wang [6] Taiwan 27,415 - 22.4 ANN 15 (Y) 0.93 0.84 0.86 Y

2021 Gutiérrez-Esparza [13] Mexico 2,289 - 50.1 RF 8~12(Y) 0.84~

0.88

- - N

2022 Kim [5] South Korea 1,991 43.8 33.9 RF 14�(Y) 0.84 0.85 0.83 N

2022 Xu [4] China 19,685 26.1 33.0 LR 8(N) 0.86 - - Y

LR: Logistic regression; DT: Decision tree; EN: Ensemble; ANN: Artificial neural network; RF: Random forest; -: Unknown; Feature: Only unsynthesized features were

counted in the final model. The feature is counted as one if a feature obtained by summing up the results of several questionnaires is included and then marked �;

Lifestyle: Whether the final model includes lifestyle-related features, Yes/No; AUC: Area under the receiver operating characteristic curve; Calibration: Calibration

performed or not, Yes/No.

https://doi.org/10.1371/journal.pone.0286635.t001
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of AUC. However, there is a limitation in that it is difficult to interpret predicted results due to

the relatively large number of features and the high complexity of the model.

We can achieve satisfactory accuracy when we apply predictive models from previous stud-

ies to real life, but they require many features (information) for prediction and do not provide

predictive probabilities. However, some models are difficult to interpret. A practical MetS pre-

dictive model should achieve satisfactory accuracy with minimal features and explain the pre-

diction results such that they are understandable. Furthermore, if a predictive model predicts

both the presence or absence of a disease and the risk probability, it will be more helpful for

understanding health status.

In this study, we developed a practical predictive model to help prevent MetS. First, we

explored the most informative features to obtain a sufficient predictive performance. We

developed novel synthetic features for candidate features and performed feature selection. Sec-

ond, we focus on tree-based classification algorithms. We constructed models from the basic

DT (CART) to ensembles (Random Forest, Extreme Gradient Boosting) and deep learning-

based trees (TabNet) and compared their performance by AUC, sensitivity, specificity, bal-

anced accuracy, and a number of features. Third, we propose a MetS management tool that

visually constructs a predictive model. The outcome of the tree model is expressed in a deci-

sion structure that has the advantage of high interpretability. We propose a visual tool (MetS

risk map) for MetS prevention by reconstructing decision structures in a more user-friendly

form and adding risk probabilities.

Materials and methods

Procedure

Fig 1 depicts the process used to develop our MetS machine learning predictive model. We

used the health checkup records to develop the model. These records contained the core ele-

ments of anthropometry and blood test results that could identify MetS. The data included sur-

vey results on lifestyle, diet, family history, and medical history. We extracted as many features

(data attributes) as possible from these data to discover informative features for diagnosis and

investigated previously known indicators. We also synthesized new anthropometric features

using waist circumference, blood pressure, and diagnostic criteria and created new dietary-

related features by borrowing the evaluation items of the Korean healthy eating index [14] and

inflammatory index [15]. After excluding subjects with outliers and missing values, all features

were arranged in a tabular data set.

In this tabular dataset, we divided 10% of the data into a test dataset for performance evalu-

ation. The rest were used as a training dataset for model learning, and 10% of it was re-divided

into a validation dataset, which was repeated 30 times to enable a stable performance

Fig 1. Overall model development procedure.

https://doi.org/10.1371/journal.pone.0286635.g001
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comparison when finding the best learning model. Except for the validation and test datasets,

only the training dataset was undersampled to adjust the ratio of cases with and without MetS

to 1:1.

Using the training/validation sets, we built five machine learning models based on LR,

CART (DT), Random Forest (RF), Extreme Gradient Boosting (XGB), and TabNet (TN). Fea-

ture selection was performed for the five models to determine the optimal features. After the

feature selection, we performed parameter tuning for the five models to show as high an AUC

as possible. Finally, we evaluated the prediction accuracy of the models using a test dataset. We

also evaluated the practicality of each learning model based on performance metrics, such as

recall, specificity, and balanced accuracy, as well as the calibration plot and Brier score, num-

ber of features, and interpretability.

Data preprocessing was implemented by R(4.0.4) and tidyverse package(1.3.1), and learning

model development and model evaluation were implemented by Python(3.8.13), PyTorch

(1.12.1), Scikit-learn(1.1.3), XGBoost(1.6.2), and TabNet(4.0).

Raw data

This study was based on health checkup records collected from South Korea: eight major met-

ropolitan cities (Seoul, Incheon, Daegu, Busan, Gwangju, Ulsan, Daejeon, and Sejong) and

eight other provinces (Gyeonggi-do, Gangwon-do, Gyeongsangnam-do, Chungcheongbuk-

do, Chungcheongnam-do, Jeollanam-do, Jeollabuk-do, and Jeju-do). The records were

obtained from the Korea Genome and Epidemiology Study conducted by the Korea Disease

Control and Prevention Agency [16]. The survey collected lifestyle, medical history, dietary

habits, food intake, and anthropometric and clinical measurements to identify risk factors for

chronic diseases common to Koreans. They include all the factors necessary for diagnosing

MetS: waist circumference, systolic and diastolic blood pressure, fasting glucose, triglycerides,

and HDL cholesterol. The survey was conducted from 2004 to 2013, and records of 173,209

adults aged 40 years or older were collected.

A total of 70,370 participants were selected from the source records and used according to

the following criteria: 1) subjects aged < 70 years; 2) exclusion of subjects with the following

diseases that can affect dietary habits: hypertension, diabetes, hyperlipidemia, stroke, fatty

liver, angina pectoris, thyroid disease, and cancer; 3) exclusion of subjects with missing values

and outliers regarding diet, blood tests, and anthropometric measurements. Table 2 summa-

rizes the characteristics of the selected participants, focusing on the MetS factors. The

Table 2. The characteristics of the selected participants (n = 70,370).

All

(n = 70,370)

Without MetS

(n = 60,775)

With MetS

(n = 9,595)

Age(year) 50.7 ± 7.6 50.3 ± 7.5 52.8 ± 7.9

Sex

male, n(%) 21,652 (31%) 17,424 4,228

female, n(%) 48,718 (69%) 43,351 5,367

Systolic blood pressure (mmHg) 120.4 ± 14.3 118.5 ± 13.3 132.5 ± 14.4

Diastolic blood pressure (mmHg) 75 ± 9.7 73.9 ± 9.2 82.3 ± 9.7

Waist circumference (cm) 79.6 ± 8.4 78.3 ± 7.7 87.9 ± 7.4

Fasting blood glucose (ml/dl) 91.4 ± 14.7 89.6 ± 11.8 102.7 ± 23.5

HDL cholesterol (mg/dl) 55.2 ± 13 56.9 ± 12.7 44.6 ± 9.4

Triglycerides (mg/dl) 117.3 ± 83 102.4 ± 61.9 211.7 ± 126.1

Number of risk factors 1.2 ± 1.1 0.8 ± 0.8 3.3 ± 0.6

https://doi.org/10.1371/journal.pone.0286635.t002
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Institutional Review Board (IRB) of Dankook University granted approval for the study proto-

col and waived the requirement for obtaining informed consent from participants (DKU

2021-06-008).

Preprocessing and feature synthesis

We used the presence or absence of MetS as a class label and defined MetS based on the criteria

proposed in 2005 by the revised National Cholesterol Education Program-Adult Treatment

Panel III (revised NCE APT III) [1]. Waist circumference for abdominal obesity followed the

criteria suggested by the Korean Society for Obesity [17], which is recommended for Koreans.

In summary, the diagnostic criteria for MetS in this study were as follows: 1) increased waist

circumference (�90 cm for males and �85 cm for females); 2) elevated blood pressure (systolic

blood pressure �130 mmHg or diastolic blood pressure �85 mmHg); 3) elevated fasting blood

glucose (�100 mg/dl); 4) elevated triglycerides (�150 mg/dl); 5) reduced HDL cholesterol

(�40 mg/dl for male and �50 mg/dl for female). A state that exceeded the standard was

defined as having risk factors, and a participant with three or more of the following risk factors

was diagnosed with MetS.

We extracted as many features (predictors) as possible to identify informative features for

diagnosing MetS. We targeted only noninvasive measurement items, excluding blood test

items. Table 3 summarizes the features extracted from the health checkup records. In total, 237

features were extracted and classified into three types according to their attributes: anthropo-

metric, survey-based, and synthesized. Anthropometric features consist of body information

measured by professional examination institutions and body shape-related features synthe-

sized using this information. These synthesized features are anthropometric indices that

describe body fat distribution [4]. Survey-based features contain lifestyle-related information,

such as food intake, drinking, smoking, and exercise, and were collected through question-

naires [16].

In addition to these two types of features, we synthesized new features. Waist circumference

and blood pressure, which are noninvasive information and risk factors for MetS, were synthe-

sized as follows:

f zð Þ ¼ elliot sigmoid zð Þ ¼
0:5 � z
1 þ jzj

þ 0:5;

where z ¼
x � c
r � c

; c ¼ diagnositc criteria; r ¼ 0:1

Table 3. List of features extracted from the health checkup records.

Type (N) Category (N) Feature Synthetic

Anthropometric

(19)

Basic (9) sex, age, height, weight, waist circumference, hip circumference, pulse, systolic blood pressure, diastolic blood

pressure

No

Body shape (10) BMI, BFP, WHR, WHtR, BRI, ABSI, CUN-BAE, C-INDEX, AVI, BAI Yes

Survey-based

(151)

Lifestyle (17) habit and amount: exercise, sleep, smoking, drinking, eating No

Diet (129) intake for 106 foods, calories, 22 nutrients No

Family history

(5)

hypertension, diabetes, angina, stroke, cancer No

Synthesized

(67)

Body-based (9) SBP, DBP, BP, WC, bWC, BPWC_con, BPWC_mul, BPWC_add, BPWC_diff Yes

Diet -based (58) Korean health eating index items, dietary inflammatory index items Yes

N: The number of features.

https://doi.org/10.1371/journal.pone.0286635.t003
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The measured x of waist circumference or blood pressure was scaled based on each diagnostic

criterion and then applied to the sigmoid series function. In the case of blood pressure, c in the

denominator was substituted with 45, which is the difference between systolic and diastolic

blood pressure. In addition, the final synthetic feature of blood pressure was higher after

obtaining systolic and diastolic synthetic features. WC and BP, which are the basis materials

for the other synthetic features, have the following properties: 1) this value ranges between 0

and 1; 2) when this value is 0.5, the original value is the same as the diagnostic criterion; 3) as

this value approaches 1, it significantly exceeds the diagnostic criterion; 4) this value more sen-

sitively reflects changes near the diagnostic criterion. Table 4 summarizes the details of the fea-

tures, and further details can be found in our previous study [18].

Moreover, additional features were created by synthesizing these basic unit features (BP

and WC) again and calculating lifestyle-related features according to each measurement item

of the Korean health eating index [14] and the dietary inflammatory index [15] (Tables 3 and

4). Synthetic features are marked “Yes” in the Synthetic column in Table 3, and their names

are capitalized to distinguish them from the raw features. In this study, “raw features” refer to

features extracted from a single piece of information, such as height, weight, and waist circum-

ference, while synthetic features refer to new features made using two or more raw features.

Table 4. List of types and details of synthetic features used in this study.

Type Feature Description Formula

Anthropometric

(Known)

BMI Body Mass Index weight (kg)/height (m)2

BFP Body Fat Percentage Male: 0:567 � waist ðcmÞ þ 0:101 � age � 31:8

Female: 0:439 � waist ðcmÞ þ 0:221 � age � 9:4

WHR Waist to Hip Ratio waist (cm)/hip (cm)

WHtR Waist-to-Height Ratio waist (cm)/height (cm)

BRI Body Roundness Index
364:2 � 365:5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðwaist ðcmÞ=p � height ðcmÞÞ
2

q

ABSI A Body Shape Index waist ðmÞ= BMI
2=

3 � heightðmÞ
1=

2

� �

CUN-BAE Clinica Universidad de Navarra-Body Adiposity Estimator

index

�44:988 þ ð0:503 � ageÞ þ ð10:689 � sexÞ þ ð3:172 � BMIÞ �

ð0:026 � BMI2Þ þ ð0:181 � BMI � sexÞ � ð0:02 � BMI � ageÞ �

ð0:005 � BMI2 � sexÞ þ ð0:00021 � BMI2 � ageÞ
C-INDEX Conicity Index waist ðmÞ=ð0:019 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
weightðkgÞ=heightðmÞ

p
Þ

AVI Abdominal Volume Index f2 � waistðcmÞ
2

þ 0:7 � ðwaistðcmÞ � hipðcmÞÞ
2
g=1000

BAI Body Adiposity Index 100 � hip mð Þ=heightðmÞ
3=

2 � 18

Synthetic

(developed by

us)

SBP Risk based on sbp (Scaled sbp) 0:5 �
sbp�130

4:5
g= 1 þ abs sbp�130

4:5

� �
g þ 0:5

��

DBP Risk based on dbp (Scaled dbp) 0:5 �
dbp�85

4:5
g= 1 þ abs dbp�85

4:5

� �
g þ 0:5

��

BP Risk based on bp

(Scaled bp on the higher side)

Max(SBP,DBP)

WC Risk based on waist

(Scaled Waist)
Male: 0:5 � waist�90

9
g= 1 þ abs waist�90

9

� �� �
þ 0:5

�

Female: 0:5 � waist�85

8:5
g= 1 þ abs waist�85

8:5

� �
g þ 0:5

��

bWC BMI and WC interaction BMI×WC

BPWC_add Risk based on BP and WC BP+WC

BPWC_mul BP and WC interaction BP×WC

BPWC_diff Imbalance between BP and WC BP−WC

BPWC_con Interaction between BP and WC above certain values Max(BP×WC−0.25, 0)

waist = waist circumference; hip = hip circumference; sbp = systolic blood pressure; dbp = diastolic blood pressure; bp = blood pressure. SBP and DBP in capital letters

are synthetic features that differ from those of sbp and dbp.

https://doi.org/10.1371/journal.pone.0286635.t004
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Prepare train/validation/test sets

We divided the dataset into training and test datasets at a ratio of 9:1. We re-split the training

dataset at a 9:1 ratio and used a small portion as a validation dataset. Because there was an

imbalance between classes, the prevalence of MetS was 13.6%, and the ratio of MetS to nonme-

tabolic cases was adjusted to 1:1 using the undersampling method. Undersampling was per-

formed only on the training dataset, and the original MetS prevalence was maintained in the

validation and test datasets. The process of separating the validation dataset from the training

dataset was repeated 30 times to construct a dataset containing various possible non-MetS

cases (Table 5).

Build candidate models

Feature selection. In the candidate model-building phase, feature selection and parameter

tuning were performed for the five classification algorithms. We attempted to screen no more

than 10 final features for the practical use of diagnostic models. Among the three types of fea-

tures classified in Table 3, the most informative features were selected after three rounds, as

shown in Fig 2. Each round also performs a feature selection process, as shown in Fig 3.

First, three rounds followed the following procedure: Round 1 selects no more than 10 best

features from each of the anthropometric and survey-based features. Round 2 combines each

selected feature and then selects no more than 10 best features from the feature set. Finally,

Round 3 selects no more than 10 best features from the feature set that combines the features

selected in Round 2 with our proposed synthetic features.

Each step followed the following procedure: First, we evaluated the feature importance and

selected the top 30 or fewer features. Feature importance was evaluated using the method pro-

vided by each classifier, and LR was based on the exponential conversion of the coefficients. In

the second step, we selected up to 10 features that we had previously obtained using the recur-

sive feature elimination (RFE) method. The RFE is a wrapper feature selection method, which

is a model-dependent method based on the evaluation of the learning model used. In this pro-

cess, we used the RFE and RFECV functions of sklearn and the AUC as the evaluation criteria.

In the third step, we selected the best performance feature set from all 10 possible feature com-

binations. We constructed the model using each feature combination and selected the feature

set of the models with the highest AUC.

Classification algorithms. The selection criteria for the five models are delineated as fol-

lows: First, LR was chosen as a benchmark model for performance comparison. LR, a conven-

tional algorithm alongside DT, is renowned for its interpretability. DT and TN were chosen

based on their interpretive characteristics [19–21]. DT possesses an innate quality of being eas-

ily comprehensible by non-experts if it has a reasonable number of nodes. TN, a recent deep

learning model, can generate feature maps through a learnable mask, representing features

highly correlated with prediction results. It was postulated that TN’s interpretability could ren-

der it the most appropriate option if it exhibits a discernable difference in performance com-

pared to existing models. RF and XG were selected for performance evaluation because the

Table 5. Characteristics of the training/validation/test datasets.

Sample Number Size MetS (%)

All 1 70,370 13.6

Training 30 15,560 ± 46 50.0

Validation 30 6,334 13.7 ± 0.4

Test 1 7,037 13.5

https://doi.org/10.1371/journal.pone.0286635.t005
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ensemble model RF and boosting family XG are known to be the highest performing models

in tabular data [22–24]. Consequently, the performance of these models served as an upper

limit to gauge the positioning of interpretable models DT and TN.

The rationale for selecting the DT-series algorithm lies in its inherent flexibility, which can

be attributed to two primary characteristics [25]. First, decision trees are categorized as non-

parametric methods, thereby implying that they are not constrained by any assumptions per-

taining to the distribution of the space. Second, decision trees are distance-based models that

neither require normalization nor scale conversion and are robust to the presence of outliers.

TN is a novel deep neural network (DNN) architecture that utilizes a decision-tree-based

approach to handle tabular data [21]. TN is capable of 1) processing raw data without any pre-

processing, 2) selecting features in an instance-wise manner using sequential attention, and 3)

mimicking an ensemble by sequentially repeating DNN blocks called "Steps" [21]. The key ele-

ment of TN is the learnable mask used for feature selection, which enables the implementation

of output manifolds similar to those of Decision Trees. The TN architecture is built by repeat-

ing the Step building block, where each Step receives attention information from the previous

Step, learns the mask, selects the features, and outputs the results.

Fig 2. Diagram for feature selection process.

https://doi.org/10.1371/journal.pone.0286635.g002

Fig 3. Feature selection process for each round.

https://doi.org/10.1371/journal.pone.0286635.g003
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Parameter tuning. Parameters were tuned using the ParameterGrid function of the Model

Selection class provided by sklearn. First, the parameters were preset for each classifier according

to the preset parameter column in Table 6 to generate the basic models for parameter tuning. All

other non-predefined parameters used default values. Then, as shown in the grid parameter col-

umn in Table 6, the optimal combination was determined by changing the values of the main

parameters for each classifier. A grid search was conducted using AUC as the evaluation criterion.

Model calibration

Calibration is an essential component of predictive model evaluation for medical decision-

making, diagnosis, and prognosis [26]. Calibration is a measurement of how well the predicted

probability of an event matches the true underlying probability of the event [27]. In practice, a

good calibration means that a predicted probability of 0.9 actually occurs with a probability of

0.9 [27]. Clinically, the probability of occurrence can also be interpreted as a risk that has prac-

tical significance. In the decision-making process, it is more useful to refer to continuous val-

ues for risks, such as probability, rather than simply broad classifications, such as MetS [27].

Therefore, it is important that our models are well-calibrated and have good discrimination.

We used three methods to calibrate the predictive probability of a diagnosis model: Platt

scaling, isotonic regression, and Pozzolo’s calibration [28,29]. These methods are designed for

binary classification and require the use of an independent calibration set to obtain good cali-

bration probabilities [29].

Platt scaling is the most effective method for calibrating SVM prediction probabilities when

the predicted probabilities are distorted in a sigmoid shape [29]. The calibrated probability is

obtained by passing the output f(x) of the diagnostic model through the sigmoid function:

P y ¼ 1jfð Þ ¼
1

1 þ expðAf þ BÞ

Table 6. Parameter tuning settings by classifier.

Classifier Preset parameters Grid of parameters

LR random_state: 100,

penalty: ’none’

solver: [’newton-cg’,’lbfgs’,’sag’,’saga’]

DT

(CART)

random_state: 100 criterion: [’gini’, ’entropy’],

max_depth: [2, 3, 4, 5],

min_samples_split: [0.01, 0.1, 0.2],

max_features: [None, ’log2’, ’sqrt’],

splitter: [’best’, ’random’],

min_samples_leaf: [50, 100, 200]

RF random_state: 100 bootstrap: [True, False],

max_depth: [3, 4, 5, None],

min_samples_leaf: [2, 4],

min_samples_split: [2, 5, 10],

n_estimators: [200, 500, 1000, 2000]

XGB random_state: 100,

objective: ’binary:logistic’,

booster: ’gbtree’,

n_jobs: -1,

seed: None

n_estimators:[200,500,1000],

max_depth: [4,6,8],

learning_rate: [0.01, 0.05, 0.1],

subsample: [0.6, 0.7, 0.8]

TN seed: 100

optimizer_fn:torch.optim.Adam,

optimizer_params: dict(lr = 2e-2),

scheduler_params:{"step_size":50, "gamma":0.9},

scheduler_fn:torch.optim.lr_scheduler.StepLR,

mask_type:’entmax’,

n_steps: [2, 3],

gamma: [0.8, 1, 1.2],

n_independent: [2,3,4],

n_shared: [2,3,4],

momentum: [0.01,0.02,0.03],

https://doi.org/10.1371/journal.pone.0286635.t006
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Parameters A and B are fitted using the maximum likelihood estimation method from the fit-

ting set, and gradient descent is used to find the following solution [29]:

argmin
A;B

f�
X

i
yilogðpiÞ þ ð1 � yiÞlogð1 � piÞg; where pi ¼

1

1 þ expðAfi þ BÞ

Isotonic regression is a more generalized method, with the only restriction being that the

mapping function is monotonically increasing (isotonic) [29]. The basic assumption in iso-

tonic is:

yi ¼ mðfiÞ þ �i;

where m is an isotonic function, fi is the prediction from the model, and yi is the class label.

Then, given a fitting set (fi, yi), the isotonic regression problem is to find the isotonic function

m̂ such that

m̂ ¼ argminz

X
ðyi � zðfiÞÞ

2

Isotonic regression has the advantage of being able to calibrate any monotonous distortion

well, whereas overfitting is likely to occur when data are scarce [29].

Pozzolo’s method corrects the predictive probability of the undersampled model [28].

Undersampling resulted in a mismatch in the distribution between the training and test sets.

In other words, the learning model was based on the distribution of the training set, but the

test set used in the evaluation was similar to the distribution before undersampling. Therefore,

it is necessary to adjust the bias caused by the difference between these two distributions in the

predictive probabilities of the learning model [28]. The bias-corrected probability p0 is

obtained using the following equation:

p0 ¼
bps

bps � ps þ 1
;

where β is the probability of selecting an undersampled negative instance from all negative

instances and ps is the predictive probability of a model trained on undersampled datasets. The

advantage of Pozzolo’s method is that it is not only possible to calculate the optimal threshold

in a simple way based on mathematical theory, but it also does not require additional fitting

sets for calibration. The optimal thread hold equals the probability of selecting a positive from

the entire dataset.

Calibration is typically measured as a set of predictions and not as an individual prediction.

It is impossible to directly measure the true underlying probability of a one-time event because

only one event occurs or does not occur [27]. The Brier score is a typical method and is the

mean squared error for a set of predictions between the actual and predicted probabilities [26].

Given a set of predictions p̂ with true probabilities p, the Brier score is

1

n

Xn

i¼1

ðpi � p̂iÞ
2

A lower score indicates better accuracy, but no "good" criterion has been established [27].

Therefore, another measurement is required to determine whether the calibration is signifi-

cant, such as the Spiegelhalter z-test [26]. This method presents a criterion for determining the
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significance of calibration by decomposing the Brier score. Spiegelhalter’s z-test is defined as

z ¼

Pn
i¼1

ðyi � p̂iÞð1 � 2p̂iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ð1 � 2p̂iÞ

2p̂ið1 � p̂iÞ

q ;

where yi is the ith true class label and p̂i is the ith predicted probability. Statistically significant

scores (i.e., z<-1.96 or z > 1.96) generally indicate poor calibration because the values of z fol-

low an asymptotically standard normal distribution, and the null hypothesis is that the model

is well-calibrated [27].

There are ways to evaluate calibrations using a graphical approach to compensate for the

limitations of summary statistics, such as the Brier score and Spiegelhalter’s z-test statistic. A

calibration plot, also called a reliability plot, is a graph that connects the corresponding points

with the prediction probability on the x-axis and the actual probability on the y-axis. The plot

includes a diagonal line that is fully calibrated. The advantage of the calibration plot is that

miscalibration patterns can be easily identified [27].

Model comparison metrics

In medical research, the AUC is widely used for discriminant evaluation [26,27,30]. The ROC

plot depicts the trade-off between recall and specificity. In the plot, the x-axis denotes recall, y-

axis the specificity, and AUC the area under the ROC curve.

Recall and specificity are two components that measure the validity of diagnostic models

with dichotomous predictions [30]. Comparing the predicted diagnosis with the actual health

status, it was divided into four cases: True positive (TP), False positive (FP), True negative

(TN), and False negative (FN). TP is a case in which a patient with the disease is predicted to

be positive. FP is a case in which a patient without a disease is predicted to be positive. TN

occurs when a patient without a disease is predicted to be negative. FN is a case in which a

patient with a disease is predicted to be negative. The recall of a diagnosis refers to the ability

of the model to correctly identify patients with the disease, whereas the specificity of a diagno-

sis refers to the ability of the model to correctly identify patients without the disease:

recall ¼ True positives=ðTrue positives þ False negativesÞ

specificity ¼ True negatives=ðTrue negatives þ False positivesÞ

The AUC also has robust properties in terms of prevalence because recall and specificity are

not affected by the prevalence of the disease [30]. In addition, the AUC can have values

between 0 and 1 because the two axes of ROC are recall and specificity with values between 0

and 1; the AUC of the pure random model is 0.5, and the AUC of the perfect model is 1 [27].

We also used balanced acuity to evaluate discrimination, as it is a robust indicator of preva-

lence.

balanced accuracy ¼ ðrecall þ specificityÞ=2

Results

Feature selection

Selected features and their importance. Seventeen features were selected from the five

classifiers, as listed in Table 7. There were eight anthropometric features, six of which were our
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proposed synthetic features. The proposed features are WC, BP, BPWC_add, BPWC_mul,

BPWC_dif, and bWC, and the features of previous studies are CUNBAE and WHR. These

synthetic features were composed of raw features, as listed in Table 8. From the raw feature

point of view, the proposed synthetic features were mainly based on waist circumference, sys-

tolic and diastolic blood pressure, and sex, and the features proposed in previous studies con-

sisted of age, sex, weight, height, waist circumference, and hip circumference. The selected

lifestyle-related features were carbohydrate energy, fat energy, grain, retinol, kimchi, green

vegetables, leaf tea, lettuce, and non-smoker (see Table 9 for the meaning of each feature).

Most were related to food or nutrient intake, and only the current smoking status was related

to lifestyle.

In all classifiers, our proposed synthetic features were not only selected as important fea-

tures but also ranked high (Fig 4). Specifically, synthetic features composed of WC, BP, and

variations of these two were selected. Existing synthetic features and lifestyle-related features

followed our synthetic features: CUN-BAE, WHR, carbohydrate energy, non-smoker, grain,

retinol, kimchi, fat energy, green vegetables, leaf tea, and lettuce (see Tables 8 and 9 for the

meaning of these features).

Based on the classification model, the total number of features was DT (3) < TN (4) < LR

(5) < XGB (6) < RF (8), in ascending order. Based on the number of raw features, the order

Table 7. Final selected features.

Classifier Final selected features (N) Raw features (N)

LR *WC, *BP, CUN-BAE, carbohydrate energy, non-

smoker

(5) waist circumference, systolic blood pressure, diastolic blood pressure, sex, age, weight,

height, carbohydrate energy, non-smoker

(9)

DT *BPWC_add, *BPWC_mul, *BPWC_dif (3) waist circumference, systolic blood pressure, diastolic blood pressure, sex (4)

RF *WC, *BPWC_dif, CUN-BAE, grain,

retinol, kimchi, fat energy

(8) waist circumference, systolic blood pressure, diastolic blood pressure, sex, age, weight,

height, grain, retinol, kimchi, fat energy

(11)

XGB *BPWC_add, *WC, *bWC, *BP, WHR,

green vegetables

(6) waist circumference, systolic blood pressure, diastolic blood pressure, sex, wight, height,

hip circumference, green vegetables

(8)

TN *bWC, *BP, leaf tea, lettuce (4) waist circumference, systolic blood pressure, diastolic blood pressure, sex, weight, height,

leaf tea, lettuce

(8)

All *WC, *BP, *BPWC_add, *BPWC_mul,

*BPWC_dif, *bWC, CUN-BAE, WHR,

carbohydrate energy, fat energy, non-smoker,

grain, retinol, kimchi, green vegetables,

leaf tea, lettuce

(17) waist circumference, systolic blood pressure, diastolic blood pressure, sex, age, wight, hip

circumference, height, carbohydrate energy, fat energy, non-smoker, grain, retinol,

kimchi, green vegetables, leaf tea, lettuce

(17)

N: The number of features. The proposed synthetic feature is an asterisk before the feature name. Raw features refer to features of a single piece of information, such as

height, weight, and waist circumference, and synthetic features are created using these raw features.

https://doi.org/10.1371/journal.pone.0286635.t007

Table 8. Raw features used for synthesis.

Synthetic feature Raw features used for synthesis N

WC waist circumference, sex 2

BP systolic blood pressure, diastolic blood pressure 2

BPWC_add

BPWC_mul

BPWC_dif

waist circumference, sex,

systolic blood pressure, diastolic blood pressure

4

bWC waist circumference, sex, weight, height 4

CUN-BAE age, sex, weight, height 4

WHR waist circumference, hip circumference 2

N: The number of features.

https://doi.org/10.1371/journal.pone.0286635.t008
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differed slightly: DT (4) < XGB = TN (8) < LR (9) < RF (11). DT was the smallest with 4, and

RF was the largest with 11. DT used the fewest features in both cases, requiring only four raw

features: waist circumference, systolic blood pressure, diastolic blood pressure, and sex. Fig 5

schematically shows the inclusion relationship of the raw features required for predicting each

classification model. At its core, there are four features used by the DT, which are character-

ized by direct involvement in the MetS diagnostic criteria. Along with these four core features,

height and weight are key features used in all classifiers, except DT. Based on these key fea-

tures, each classifier has peripheral features, such as different dietary habits and lifestyles.

Table 9. Descriptions of raw features used for synthesis.

Feature Description

carbohydrate energy the percentage of energy obtained from carbohydrates

fat energy the percentage of energy obtained from fat

non-smoker Currently non-smokers (smoking = 0, non-smoking = 1)

grain average daily grain intake

retinol average daily retinol intake

kimchi the average daily intake of kimchi

green vegetables average daily green vegetable intake

leaf tea Average daily green tea intake

lettuce the average daily intake of lettuce

Kimchi is a traditional Korean dish with pickled cabbage.

https://doi.org/10.1371/journal.pone.0286635.t009

Fig 4. Optimized classifiers and their important features. The x-axis is the relative importance of the features, and the y-axis is the name of

the features used. The x-axis of LR is the value of applying the regression coefficient to the exponential function. “Our proposed synthetic

feature” was asterisked in red before the feature name. (CLBE: The percentage of energy obtained from carbohydrates, non-smoker: Current

smoking status, grain: Whole grain intake, retinol: Retinol intake, kimchi: Kimchi (Korean traditional food) intake, fat energy: Percentage of

energy from fat, green vegetables, leaf tea: Green tee intake, lettuce: Lettuce intake) See Table 4 for synthetic features.

https://doi.org/10.1371/journal.pone.0286635.g004
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Candidate models

Model parameters. Table 10 lists the results of the parameter tuning for each classifier.

These parameters were used to build the final candidate model for each classifier. Table 7 lists

the final selected features used by each candidate model.

Performance comparison. Table 11 summarizes the performances of the candidate mod-

els. Except for LR, the performance of all candidate models improved after parameter tuning.

The DT showed the most noticeable performance improvement over the other models, with

an AUC of 0.792–0.886. Comparing the models with optimized parameters based on AUC,

Fig 5. Feature diagram for each classifier from raw features perspective. The number of features used by each

classifier is indicated in parentheses.

https://doi.org/10.1371/journal.pone.0286635.g005

Table 10. Parameters of the candidate models after tuning the parameters.

Model Preset parameters Optimal parameters

LR random_state: 100,

penalty: ’none’

solver: ’saga’

DT random_state: 100 criterion: ’gini’,

max_depth: 5,

max_features: None,

min_samples_split: 0.01,

splitter: ’best’

min_samples_leaf: 200

RF random_state: 100 bootstrap: True,

max_depth: None,

min_samples_leaf: 4,

min_samples_split: 10,

n_estimators: 2000

XGB random_state: 100,

objective: ’binary:logistic’,

booster: ’gbtree’,

n_jobs: -1,

seed: None

n_estimators: 500,

max_depth: 4,

learning_rate: 0.01,

subsample: 0.7

TN seed: 100

optimizer_fn:torch.optim.Adam,

optimizer_params: dict(lr = 2e-2),

scheduler_params:{"step_size":50, "gamma":0.9},

scheduler_fn:torch.optim.lr_scheduler.StepLR,

mask_type:’entmax’

n_steps: 2,

gamma: 1.1,

n_independent: 2,

n_shared: 3,

momentum: 0.03,

https://doi.org/10.1371/journal.pone.0286635.t010
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XGB (0.893) performed the best, followed by TN (0.892), RF (0.889), LR (0.887), and DT

(0.886). All classifiers achieved a higher recall than specificity. On average, recall and specificity

were 0.868 and 0.756, respectively. Recall was highest in XGB (0.89), followed by TN(0.885),

DT(0.875), RF(0.872), and LR(0.818). The maximum difference in recall was 0.072, but in

tree-based classifiers excluding LR, the difference significantly decreased to 0.018. Conversely,

LR showed the highest specificity at 0.791, and the tree classifiers performed close to 0.75.

Calibration of candidate models

Table 12 and Fig 6 show the results of the evaluation using a test dataset after applying calibra-

tions to the optimal models. First, as shown in Fig 6, when calibration was not applied, the pre-

dicted probability in all classification models was overestimated compared to the actual

probability. However, there are some differences in each method, but the prediction probabil-

ity is well corrected by applying the calibration overall. As shown in Table 12, the Brier score

Table 11. Performance of candidate models.

LR DT RF XGB TN

Before

Parameter

tuning

AUC 0.887±0.005 0.792±0.011 0.885±0.005 0.884±0.005 0.891±0.005

Recall 0.818±0.014 0.806±0.017 0.864±0.014 0.857±0.011 0.884±0.021

Specificity 0.791±0.006 0.726±0.008 0.758±0.006 0.76±0.006 0.743±0.023

BACC 0.805±0.006 0.766±0.008 0.811±0.007 0.809±0.006 0.813±0.007

After

Parameter

tuning

AUC 0.887±0.005 0.886±0.005 0.889±0.004 0.893±0.004 0.892±0.005

Recall 0.818±0.014 0.875±0.016 0.872±0.013 0.89±0.012 0.885±0.016

Specificity 0.791±0.006 0.747±0.014 0.756±0.006 0.746±0.006 0.742±0.014

BACC 0.805±0.006 0.811±0.006 0.814±0.007 0.818±0.007 0.814±0.006

AUC: Area Under Curve; BACC: Balanced Accuracy.

https://doi.org/10.1371/journal.pone.0286635.t011

Table 12. Calibration results for each classification model.

Classifier Metric Calibration methods

Original Sigmoid Istonic Undersample

LR Brier Score 0.137 0.080 0.080 0.080

Spiegelhalter Z-score 0.029 1.566 1.398 1.321

Spiegelhalter p-value 0.977* 0.117* 0.162* 0.187*
DT Brier Score 0.137 0.079 0.079 0.078

Spiegelhalter Z-score 5.851 0.875 2.143 0.352

Spiegelhalter p-value 0.00 0.382* 0.032 0.725*
RF Brier Score 0.137 0.079 0.079 0.079

Spiegelhalter Z-score 4.456 1.126 1.968 -0.006

Spiegelhalter p-value 0.00 0.260* 0.049 0.995*
XGB Brier Score 0.136 0.078 0.077 0.077

Spiegelhalter Z-score 4.721 -0.180 1.113 -1.035

Spiegelhalter p-value 0.00 0.857* 0.266* 0.301*
TN Brier Score 0.132 0.078 0.078 0.078

Spiegelhalter Z-score 7.280 0.721 1.931 2.257

Spiegelhalter p-value 0.00 0.471* 0.054* 0.024

The calibration was considered significant if the p-value was greater than 0.05; * indicates significance. For each classifier, the final selected calibration result is bolded.

Original: Non-calibration, Sigmoid: Platt scaling, istonic: Isotonic regression, Undersample: Pozzolo’s method.

https://doi.org/10.1371/journal.pone.0286635.t012
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of the calibrated model was lower, and there was no significant difference between the calibra-

tion methods. However, there was a difference in the significance of the results between cali-

bration methods when evaluated based on Spiegelhalter’s statistics. DT and RF were not

significant in the istonic regression method, and TN was not significant in Pozzolo’s method.

Considering the calibration plot, Brier score, and Spiegelhalter’s statistics, we determined that

it was appropriate to calibrate RF and TN with Platt scaling, LR and XGB with istonic regres-

sion, and DT with Pozzolo’s method.

Comparison of candidate models

The characteristics of the calibrated models based on the analysis thus far are summarized in

Table 13. The characteristics of the model were compared in terms of four aspects:

Fig 6. Calibration plot for each classification model. The x-axis is the mean predicted value, and the y-axis is the fraction of positives. The more

it matches the diagonal line of the plot, the better the calibration. If the plot is drawn diagonally below, the predicted result is overestimated than

the actual result.

https://doi.org/10.1371/journal.pone.0286635.g006

Table 13. Final evaluation results of candidate models.

LR DT RF XGB TN

AUC 0.89 0.889 0.893 0.896 0.893

Recall 0.838 0.855 0.878 0.886 0.866

Specificity 0.792 0.773 0.761 0.756 0.765

BACC 0.815 0.814 0.819 0.821 0.815

Used raw feature (N) 9 4 11 8 8

Preprocessing required Yes No No No No

Calibration method Istonic Undersample Sigmoid Istonic Sigmoid

-Brier score 0.080 0.078 0.079 0.077 0.078

- Spiegelhalter Z-score 1.398 0.352 1.126 1.113 0.721

- Spiegelhalter p-value 0.162 0.725 0.260 0.266 0.471

Interpretability Easy Easy Hard Hard Feasible

https://doi.org/10.1371/journal.pone.0286635.t013
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discrimination, calibration, ease of use of features, and interpretability. All the models were

evaluated using the same test dataset.

From the perspective of discrimination, XGB exhibited the highest performance at 0.896.

RF and TN(0.893), LR(0.89), and DT(0.889) followed. However, the gap between the best and

poor performances was 0.007, and the difference in discrimination between the models was

not noticeable. Recall, specificity, and balancing accuracy showed similar patterns to AUC. In

terms of calibration, it also showed significant performance without notable differences

between the models.

When comparing the number of raw features required for prediction, the DT was the small-

est with four, followed by XGB, TN, LR, and RF. The top three performance models, XGB,

TN, and XGB, used more than eight raw features. The DT only required raw features of less

than half of the other prediction models. Furthermore, unlike LR, DTs have the convenience

of not requiring a preprocessing process, such as scale, when using features.

Each model was calibrated using different calibration methods, and the results were signifi-

cant when evaluated using the Brier score, Spiegelhalter z-score, or p-value. Thus, in all mod-

els, the predictive probability can be interpreted as the actual probability, that is, the risk of

developing MetS. In addition to the interpretability of predictive probabilities, LR, DTs, and

TN are characterized by easy interpretation of the model itself. On the other hand, RF and

XGB have poor interpretation of predictive results in an ensemble of numerous trees.

Decision of final MetS predictive model

The five classification algorithms produced prediction models with similar performances. In

this case, the simpler the model, the better. Therefore, the number of features used was the cri-

terion for the model selection. The decision tree used the fewest raw features (systolic and dia-

stolic blood pressures, waist circumference, and sex) compared to the other models, and these

features were also easy to collect. Furthermore, DTs have several advantages: first, they do not

need assumptions about data such as LR; second, they can be used directly as predictors with-

out preprocessing such as scaling; third, they are easy to interpret as the model itself structur-

ally internalizes the decision process. RF, XGB, and TN are tree-based models that can be used

without preprocessing and have nonparametric model properties, but RF and XGB are diffi-

cult to interpret as ensemble models. On the other hand, TN can interpret the prediction

results by instance, but it is not as intuitive as a DT. Therefore, we determined that the DT is a

practical model with many advantages over performance when comprehensively considering

discrimination, calibration, ease of use of features, and interpretability.

Fig 7 shows an example of how the final selected decision-making model works. When the

user provides information on systolic blood pressure, diastolic blood pressure, waist circum-

ference, and sex as input values, these four pieces of information become raw features and are

converted into synthetic features called BP and WC. BP and WC were synthesized once more

to produce three synthetic features, BPWC_add, BPWC_mul, and BPWC_dif, which were

used as the final input values for the prediction model. The model then outputs the predictive

results of whether this user has MetS, what is the probability, and how many times the proba-

bility of developing the disease compared to the average. For example, if a woman had a sys-

tolic blood pressure of 140 mmHg, diastolic blood pressure of 90 mmHg, and waist

circumference of 89 cm, these measurements were first converted to 0.84 (BP) and 0.66 (WC).

After that, the conversion values are once again converted to 1.50 (BPWC_add), 0.55

(BPWC_mul), and 0.18 (BPWC_dif) and input into the model. Based on this input value, the

model diagnosed MetS with a probability of 0.31 (risk) and provided information that the risk

probability was 2.25 times more likely to develop than the average.
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Decision tree and metabolic syndrome risk map

We devised a “MetS risk map” with WC and BP as axes by interpreting the structured results

of the decision-making process. The decision tree outputs the result of structuring the decision

process in the form of the plot (A) or text (B), as shown in Fig 8. We decomposed the classifica-

tion rules for each node, as shown in Fig 8B, and expressed them on a plane with WC and BP

as axes. This was possible because the DT model used only three features represented by the

relationship between WC and BP: BPWC_mul = BP *WC, BPWC_add = BP + WC, and

BPWC_dif = BP-WC. DTs divide the space using vertical or horizontal lines; however, we

were able to divide the space by diagonal and curve using the relationship of these features.

Fig 7. Example of the execution process of the final model from raw feature to prediction. The values in the circle are the actual values for an

instance.

https://doi.org/10.1371/journal.pone.0286635.g007

Fig 8. Creating a MetS risk map from the decision tree. (A) is the DT of this study and has a depth of 5. Each node is a classification rule for datasets,

with blue representing MetS and orange representing non-MetS. The higher the probability, the darker is the color. (B) is a textual representation of

the decision rule in (A), where only the red box portion is taken. Classification rules are expressed in the form of inequality; class 1 means MetS, and

class 0 means non-MetS. (C) represents the inequality expressed in (B) in a plane. For example, at (C), the red diagonal at the bottom is the line for

BPWC_add = 0.66. Because BPWC_add = BP + WC, the rule can be drawn on a plane with WC and BP as axes.

https://doi.org/10.1371/journal.pone.0286635.g008
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Each divided region of the MetS risk map corresponded one-to-one to the terminal node of

the DT. The MetS risk map was completed by matching the risk of MetS using the calibrated

probability for each region (Fig 9). Risk is the calibrated probability divided by an adjusted

threshold. The threshold was adjusted using Pozzolo’s method [28] and was found to be 0.137,

similar to the prevalence of MetS in the population. Therefore, the risk can be interpreted as

the number of times the probability of incidence is higher than the prevalence of MetS in the

entire population.

The MetS risk maps were divided into three zones. These zones were formed by two lines,

as shown in Fig 9B. The first zone is the lower part of the area divided by BP+WC =0.66 and is

a safety zone for MetS. Most regions were classified as non-MetS, and the risk of development

was much lower than 1. The second zone is the upper part of the area divided by BP×WC

=0.31 and is a risk zone for MetS. All regions were classified as having MetS, and the risk of

development was > 2. The third zone is the area between the two lines and is a warning zone.

This zone gradually progresses to MetS and is the most important zone for prevention. In

more detail, the important region for prevention can be narrowed down to the region indi-

cated by the gray zone in Fig 9B. The gray zone is the region where the risk increases rapidly

compared to the adjacent non-MetS regions. At the same time, MetS and non-MetS existed at

similar rates in this area. Combining these two facts, we can infer that the gray area is the path

to active conversion to MetS.

Summary of results

In the results section, we describe various aspects of the developed MetS prediction models.

The summary is as follows:

Fig 9. MetS risk map. (A) is the final form of the MetS risk map. We split the region to correspond to the leaf node of the DT on a plane with the proposed

synthetic feature WC and BP as two axes. Within each region, there is a record of how much the incidence is higher than average. The greater the value, the

higher is the risk of developing the disease. Regions with values of 1 or more are classified as MetS areas and marked in red. In (B), important lines and regions

are emphasized in preventing and managing MetS management.

https://doi.org/10.1371/journal.pone.0286635.g009
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➀Our proposed synthetic features were effective in enhancing the classification performance.

Specifically, synthetic features based on BP and WC were evaluated as being the most

important among all classifiers. The synthetic feature uses only waist circumference, systolic

and diastolic blood pressures, and sex as the base features, which includes all classifiers in

common.

➁ In the analysis of the predicted probability of the models, we found a tendency to overesti-

mate MetS in all classifiers and calibrated it to reduce the estimation error. Therefore, the

probability predicted by the calibrated model was indicative of the risk of developing MetS.

➂We selected the DT model as the final predictive model for MetS. It used the fewest features

for prediction but derived an almost similar performance to the other models. Four raw fea-

tures, namely waist circumference, systolic and diastolic blood pressures, and sex, were

used, which have the advantage of being easily measured in daily life. The decision tree

model is simple and has transparent properties that can be used to understand the decision

structure.

➃We devised a MetS risk map by reconstructing the decision structure of the final model as a

two-dimensional plane and mapping the risk probability to each region.

Discussion

We developed a predictive model for MetS that utilizes only noninvasive information, making

it practical for use in real-world scenarios. While fasting blood sugar, triglycerides, and HDL

cholesterol are important factors in diagnosing MetS, we deliberately excluded features that

require blood testing when developing our predictive model, to ensure its preventive usability.

The proposed model has three major advantages for the preventive management of MetS.

The first advantage is that the features required for prediction are just four easily measurable

features: waist circumference, systolic and diastolic blood pressure, and sex. Second, the pre-

dictive model provides the degree of risk along with the diagnosis of MetS, enabling individu-

als to cope effectively with preventive management. Third, prediction results can be easily

understood by individuals, and prediction models can be provided as visual tools recon-

structed in a simple map form. These three advantages are also consistent with the technology

acceptance model (TAM), which is a theory on the properties of information technology to be

well received in society. According to TAM, the higher the perceived usefulness and perceived

ease of use of technology, the higher the acceptability of the technology [31]. Perceived useful-

ness is related to usefulness and productivity for the task, and perceived ease of use has been

embodied, such as clear, understandable, and low mental effort [32]. Perceived usefulness is

also affected by perceived ease of use; that is, it is recognized as more useful when the user is

easy to use [33].

Using five classification algorithms, we identified 17 noninvasive raw features useful for

predicting MetS (Fig 5). At the center, systolic and diastolic blood pressures, waist circumfer-

ence, and sex were directly related to MetS diagnostic criteria. We synthesized four key anthro-

pometric features to create BP and WC features. These novel features, including various

variants using BP and WC, were of higher importance in predicting MetS than synthetic fea-

tures, such as CUN-BAE, BRI, and BMI, as proposed in previous studies. This result was pre-

sumed to be due to the inherent properties of BP and WC. The synthetic features reflect a

certain section that is more important around the diagnostic criteria, as shown in Fig 10. The

two axes, WC and BP, of the MetS risk map can be interpreted similarly to the distance from

the diagnostic criteria of abnormal factors in MetS. To be exact, BP and WC are values that
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consider about 10% of the diagnostic criteria more important and have nonlinearity similar to

sigmoid, expressed as a value between 0 and 1. BP and WC had an actual diagnostic criterion

of 0.5. Therefore, if this value approaches 0.5, it is close to the diagnostic criterion, and it

exceeds the diagnostic criterion if it exceeds 0.5. Furthermore, the 0.25–0.75 interval, which is

half the value between 0 and 1, corresponds to 10% of the diagnostic value before and after the

diagnostic criterion. That is, BP is the weighted position of blood pressure with respect to the

diagnosis criterion, and WC is the weighted position of waist circumference with respect to

the diagnosis criterion. This property fits well with the perspective of preventing chronic dis-

eases. It is more effective in the prevention of looking at a certain section with greater risk than

looking at all steps with the same importance.

Lifestyle-related features were not evaluated as important as anthropometric features. This

result was also reported in previous studies [4–13]. However, given that many studies have

reported an association between lifestyle and MetS, we speculate that the way lifestyle-related

information is collected was not sufficient to reveal its characteristics. In fact, Tabares et al.

[34] recently reported that increasing physical activity levels and lowering BMI by at least 2%

reduced the risk of developing MetS by 3.8% but added that increasing physical activity

Fig 10. Coordinate space of composite feature WC and BP. The 0.5 point of the two axes is equal to the diagnostic

criterion. WC is a feature synthesized by waist circumference and gender. BP is a feature synthesized by systolic and

diastolic blood pressure. α = (diagnostic criteria for systolic blood pressure−diagnostic criteria for diastolic blood

pressure)*0.1, β = Diagnostic criteria for waist circumference *0.1.

https://doi.org/10.1371/journal.pone.0286635.g010
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without weight loss had little effect on prediction. This finding disproves that lifestyle influ-

ences are observable when accompanied by meaningful physical changes. Therefore, it is nec-

essary to examine whether the lifestyle data used in this study contain sufficient information

accompanying physical changes. In the case of the dietary data used in this study, the fre-

quency of food intake was collected through questionnaires, which was a form of responding

to the monthly/weekly/day unit while recalling the "average frequency of intake over the past

year" [35]. If it is collected several times in cycles shorter than a year, we expect it to be differ-

ent from the current results. In fact, a study using three follow-up datasets reported that the

performance was improved by using cumulative survey data [6]. In addition, precise and

dense lifestyle data are expected to accumulate as healthcare technologies, such as smart-

watches, smart bands, and diet management apps have become popular. Therefore, future

studies are needed to identify important lifestyle features for MetS prediction based on these

data.

The DT finally achieved an AUC of 0.889, recall of 0.855, and specificity of 0.773. Com-

pared to previous studies, its performance is difficult to compare directly because of differ-

ences in race, population size, and prevalence of MetS, but it is similar in terms of AUC (see

Table 1). However, our model was characterized by higher recall than specificity. Individuals

without MetS are more likely to be classified as having MetS compared to previous research

models, but from the standpoint of preventive management, it is appropriate to conservatively

diagnose suspected patients and induce additional checkups. In addition, when comparing

studies on the MetS prediction model of Koreans over the past decade [36], to the best of our

knowledge, this study is the first based on noninvasive information from large-scale Koreans.

Of the studies listed in Table 14, two studies ([9,13]) identified gender-specific differences

in model performance when considering prevalence-robust metrics. Specifically, male models

outperformed female models in both studies, with a male balanced accuracy of 0.807 and

female of 0.646 in [13] and a male recall of 0.594 and female of 0.409 in [9]. While key anthro-

pometric features were consistent across genders, variations were observed in food-related fea-

tures. Therefore, we developed the final decision tree (DT) model separately for men and

women and compared their performance (Table 14): the balanced accuracy was 0.872 for men

and 0.890 for women, and the recall was 0.843 for men and 0.850 for women. Both gender

models shared common features such as BPWC_add and BPWC_mul (Fig 11), while the

female model included additional anthropometric and dairy-related food features. However,

when tested on the same dataset, the integrated model performed better for men based on

AUC, while no significant difference was observed for women. Consequently, the study con-

cludes that the individual models’ impact on feature selection and performance was

insignificant.

From a positive predictive value (PPV) perspective, it is possible to divide the risk map into

three distinct areas: green, yellow, and red (Fig 12A). The green zone refers to a section that is

not associated with MetS, where the risk of developing metabolic syndrome is 0 to 1 times or

lower than the average prevalence of 13.7%. The yellow zone refers to a section in which the

Table 14. Performance of integrated and sex-specific individual models using the same test set.

Case AUC Recall Specificity BACC Features

Integrated Model All 0.889 0.855 0.773 0.814 BPWC_add, BPWC_mul, BPWC_dif

Male 0.878 0.895 0.690 0.792

Female 0.890 0.826 0.806 0.816

Individual model Male 0.872 0.843 0.736 0.790 BPWC_add, BPWC_mul, WC

Female 0.890 0.850 0.780 0.815 BPWC_add, BPWC_mul, bWC, CUNBAE, BFP, dairy products

https://doi.org/10.1371/journal.pone.0286635.t014
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risk of developing MetS is 1 to 2.5 times higher. This transitional phase represents a mixed

area of cases, including both non-MetS and MetS. Despite its ambiguity due to a low PPV of

0.248, it is imperative to prioritize the prevention and management of MetS in this state, given

the increased risk probability compared to the average. The red zone refers to a section in

which the risk of developing MetS is 4 to 5.7 times higher. With a PPV of 0.673, this area is

deemed as having a high likelihood of actual metabolic syndrome cases, necessitating blood

tests for accurate diagnosis.

Table 15 summarizes the positive predictive values (PPV) for each gender in different

zones. The Yellow Zone indicates relatively low PPV for both males (0.258) and females

(0.241), implying that only one out of four predicted individuals are likely to have metabolic

syndrome. In contrast, the Red Zone exhibits higher PPV for males (0.725) and females

Fig 11. Features and feature importance of integrated and sex-specific individual models. “grp35” is a synthetic feature related to dairy

products.

https://doi.org/10.1371/journal.pone.0286635.g011

Fig 12. Risk map from PPV perspective and the risk index distribution in FP cases. (A) Three zones of risk map from the perspective of PPV perspective:

Green, yellow, and red zone. (B) Risk index distribution of FP in yellow zone. (C) Risk index distribution of FP in red zone. 0.45 is the point where MetS

management is required preemptively (indicated by a red dotted line).

https://doi.org/10.1371/journal.pone.0286635.g012
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(0.633) compared to the Yellow Zone, with males having a higher PPV. These findings suggest

that 6 to 7 out of 10 predicted individuals are highly likely to have metabolic syndrome. How-

ever, the use of binary classification diagnostic criteria to calculate PPV is inadequate for the

prevention of metabolic syndrome, which is a chronic disease that develops progressively over

time. Our focus, therefore, should be on providing individuals with opportunities to manage

the condition before it progresses to a more severe stage. Thus, in this study, we analyzed FP

from the perspective of severity, rather than solely on the presence of metabolic syndrome. To

achieve this, we employed the risk index proposed in our previous work [18] and obtained a

risk distribution for the FP cases. The resulting risk distribution is presented in Fig 12B and

12C. Our risk index employs a diagnostic threshold of 0.547 for identifying MetS [18]. How-

ever, MetS may also occur at values as low as 0.45, leading us to classify individuals in the MetS

risk group as having a score of 0.45. Using this criterion, we identified 552 of the 1176 FP cases

in the Yellow Zone as true positives, resulting in an adjusted PPV of 0.582, up from 0.248. Sim-

ilarly, in the Red Zone, 123 FP cases were reclassified as true positives, resulting in an adjusted

PPV of 0.686, up from 0.673. Nevertheless, to enhance PPV significantly, additional research is

imperative to enhance the performance by configuring individual models for each zone or

region exhibiting multiple misclassifications.

Although there is a limit to the low PPV, our final model can effectively help the decision-

making process in preventing and managing MetS by providing development risks as well as

good discrimination and recall. Previous studies have focused on the diagnosis itself, and the

evaluation of the prediction probability has been overlooked. Some studies conducted a cali-

bration for the predicted probability but did not theoretically present a threshold to distinguish

the presence or absence of MetS after correction. However, this study further expands the

interpretation of the results by calibrating the overestimated prediction probability using the

method proposed by Pozzolo [28]. In addition to being able to interpret the predicted proba-

bility as a MetS risk, it was also possible to present how serious the state is based on theoreti-

cally clear thresholds.

In addition to semantic interpretations of predictive probabilities, such as risk, we devised a

way to explain the rationale for predictive outcomes. MetS risk maps are designed to provide

Table 15. Misclassification by zone.

Zone Group FN FP TN TP PPV NPV NT-> TP Adjusted PPV

Green+Yellow+Red ALL 137 1382 4,707 811 0.370 0.972 675 0.678

Male 42 534 1,187 359 0.402 0.966 273 0.708

Female 95 848 3,520 452 0.348 0.974 302 0.580

Green ALL 137 0 4,707 0 - 0.972 - -

Male 42 0 1,187 0 - 0.966 - -

Female 95 0 3,520 0 - 0.974 - -

Yellow ALL 0 1176 0 387 0.248 - 552 0.582

Male 0 458 0 159 0.258 - 229 0.629

Female 0 718 0 228 0.241 - 223 0.551

Red ALL 0 206 0 424 0.673 - 123 0.868

Male 0 76 0 200 0.725 - 44 0.884

Female 0 130 0 224 0.633 - 79 0.856

FN: False Negative, FP: False Positive, TN: True Negative, TP: True Positive, NPV: Negative Predictive Value, PPV: Positive Predictive Value. “NP->TP” is the number

of cases that can be reclassified from NP to TP when determining whether or not to be prevented from MetS based on the risk index 0.45. Adjusted PPV is the value

calculated by reflecting “NP->TP.”

https://doi.org/10.1371/journal.pone.0286635.t015
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synergy by gathering them in one place with the structural interpretability of the DT, the

meaning of the proposed synthetic features (BP and WC) themselves, and prediction probabil-

ities that can be interpreted as risks. MetS risk maps provide a clear guide to healthcare by rep-

resenting two boundaries where health conditions change significantly. Based on these

boundaries, each individual can have a clear perception of whether they are in a safe zone,

warning zone, or risk zone for MetS. In addition, the MetS risk map forms a gray zone

(Fig 9B) where the conversion of MetS begins in earnest so that the subjects in the zone can

take or receive more active management measures. Clinicians can recommend and effectively

explain appropriate tests and treatments to patients by referring to the predicted risk for each

region of the MetS risk map. Finally, the MetS risk map can also be used as a visual tool to

monitor MetS, such as the blue dots in Fig 9B, when measured periodically because one pre-

diction result is represented in plane coordinates.

The results of this study are limited to the characteristics of the population such as race, age,

and prevalence. Therefore, our results may not be generalizable to other populations. We used

a dataset of middle-aged Koreans in their 40s and 60s and found that the prevalence of MetS

was 13.6%. We also excluded subjects undergoing blood pressure and cholesterol-related treat-

ment and those taking blood pressure and cholesterol-related drugs. Moreover, it should be

noted that the analysis of this study is based on datasets collected from 2004–2013, so there is a

time difference of more than 10 years. However, we expect future studies to allow us to com-

pare and evaluate the performance of other populations because model development follows a

procedure to maintain representation within a given population.
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