38 research outputs found
Modelo matemático de las anomalías magnéticas de la tierra
La medición del campo magnético de la Tierra, tiene una importancia práctica y científica extremadamente importante. El conocimiento preciso de los componentes del campo magnético de la Tierra juega un papel muy importante en tareas de navegación, búsqueda de depósitos de minerales tales como hierro y otros. El estudio de anomalías magnéticas tiene una importancia práctica significativa ya que estas pueden estar directamente relacionadas con la existencia de fuentes de petróleo y gas, minerales y también puede servir como un signo indirecto de la ubicación de distintos tipos de metales.El objetivo de este trabajo fue la formulación de un modelo matemático para determinar las anomalías en el campo magnético terrestre mediante el uso del nanosatélite “Ecuador-UTE”.Las ecuaciones generadas y el modelo basado en patrones de reconocimiento del campo magnético permitirán una mayor precisión en la identificación de áreas con anomalías en el campo magnético, mejorando de esa manera los procesos de telecomunicaciones, navegación y exploración minera
New Sulfamides Based on 1-Izopropil-3-α-Naftyl-5- Methoxymethyl-4-Aminopyrazole and Determination of Their Structure
Для ранее полученного 1-изопропил-3-α-нафтил-5-метоксиметил-4-нитрозопиразола
проведена реакция восстановления гидразингидратом. Впервые был синтезирован
1-изопропил-3-α-нафтил-5-метоксиметил-4-аминопиразол, который затем сульфонилировали
п-ацетамидобензолсульфохлоридом и п-толуолсульфохлоридом. В результате получены
ранее неизвестные сульфонилированные производные N-алкилированных аминопиразолов.
Состав и строение подтверждены современными методами анализа, такими как ИК-, ЯМР
1Н-спектроскопия и масс-спектрометрияFor the previously obtained 1-isopropyl-3-α-naphthyl-5-methoxymethyl-4-nitrosopyrazole, a reduction
reaction with hydrazine hydrate was performed. It was first synthesized by 1-isopropyl-3-α-naphthyl-
5-methoxymethyl-4-aminopyrazole which was then sulfonylated by p-acetamidobenzenesulfonyl
chloride and p-toluenesulfonic chloride. As a result previously unknown sulfonylated derivatives of
N-alkylated aminopyrazoles were obtained. The composition and structure are confirmed by modern
methods of analysis such as IR, 1H NMR spectroscopy and mass spectrometr
New and little known Nebria (Epinebriola) from the eastern Nepal Himalayas (Coleoptera, Carabidae)
Volume: 47Start Page: 313End Page: 32
Catalogue of the Carabus species from Siberia with preliminary notes to the taxonomical revision (Coleoptera, Carabidae)
Existence and Uniqueness Theorems in the Inverse Problem of Recovering Surface Fluxes from Pointwise Measurements
Inverse problems of recovering surface fluxes on the boundary of a domain from pointwise observations are considered. Sharp conditions on the data ensuring existence and uniqueness of solutions in Sobolev classes are exposed. They are smoothness conditions on the data, geometric conditions on the location of measurement points, and the boundary of a domain. The proof relies on asymptotics of fundamental solutions to the corresponding elliptic problems and the Laplace transform. The inverse problem is reduced to a linear algebraic system with a nondegerate matrix
Existence and Uniqueness Theorems in the Inverse Problem of Recovering Surface Fluxes from Pointwise Measurements
Inverse problems of recovering surface fluxes on the boundary of a domain from pointwise observations are considered. Sharp conditions on the data ensuring existence and uniqueness of solutions in Sobolev classes are exposed. They are smoothness conditions on the data, geometric conditions on the location of measurement points, and the boundary of a domain. The proof relies on asymptotics of fundamental solutions to the corresponding elliptic problems and the Laplace transform. The inverse problem is reduced to a linear algebraic system with a nondegerate matrix.</jats:p
Existence and Uniqueness Theorems in the Inverse Problem of Recovering Surface Fluxes from Pointwise Measurements
Inverse problems of recovering surface fluxes on the boundary of a domain from pointwise observations are considered. Sharp conditions on the data ensuring existence and uniqueness of solutions in Sobolev classes are exposed. They are smoothness conditions on the data, geometric conditions on the location of measurement points, and the boundary of a domain. The proof relies on asymptotics of fundamental solutions to the corresponding elliptic problems and the Laplace transform. The inverse problem is reduced to a linear algebraic system with a nondegerate matrix
