83 research outputs found

    A non-Gaussian factor analysis approach to transcription Network Component Analysis

    Full text link
    Transcription factor activities (TFAs), rather than expression levels, control gene expression and provide valuable information for investigating TF-gene regulations. Network Component Analysis (NCA) is a model based method to deduce TFAs and TF-gene control strengths from microarray data and a priori TF-gene connectivity data. We modify NCA to model gene expression regulation by non-Gaussian Factor Analysis (NFA), which assumes TFAs independently comes from Gaussian mixture densities. We properly incorporate a priori connectivity and/or sparsity on the mixing matrix of NFA, and derive, under Bayesian Ying-Yang (BYY) learning framework, a BYY-NFA algorithm that can not only uncover the latent TFA profile similar to NCA, but also is capable of automatically shutting off unnecessary connections. Simulation study demonstrates the effectiveness of BYY-NFA, and a preliminary application to two real world data sets shows that BYY-NFA improves NCA for the case when TF-gene connectivity is not available or not reliable, and may provide a preliminary set of candidate TF-gene interactions or double check unreliable connections for experimental verification. ? 2012 IEEE.EI

    pirScan: a webserver to predict piRNA targeting sites and to avoid transgene silencing in C. elegans

    Get PDF
    pirScan is a web-based tool for identifying C. elegans piRNA-targeting sites within a given mRNA or spliced DNA sequence. The purpose of our tool is to allow C. elegans researchers to predict piRNA targeting sites and to avoid the persistent germline silencing of transgenes that has rendered many constructs unusable. pirScan fulfills this purpose by first enumerating the predicted piRNA-targeting sites present in an input sequence. This prediction can be exported in a tabular or graphical format. Subsequently, pirScan suggests silent mutations that can be introduced to the input sequence that would allow the modified transgene to avoid piRNA targeting. The user can customize the piRNA targeting stringency and the silent mutations that he/she wants to introduce into the sequence. The modified sequences can be re-submitted to be certain that any previously present piRNA-targeting sites are now absent and no new piRNA-targeting sites are accidentally generated. This revised sequence can finally be downloaded as a text file and/or visualized in a graphical format. pirScan is freely available for academic use at http://cosbi4.ee.ncku.edu.tw/pirScan/

    RSQ: a statistical method for quantification of isoform-specific structurome using transcriptome-wide structural profiling data [preprint]

    Get PDF
    The structure of RNA, which is considered to be a second layer of information alongside the genetic code, provides fundamental insights into the cellular function of both coding and non-coding RNAs. Several high-throughput technologies have been developed to profile transcriptome-wide RNA structures, i.e., the structurome. However, it is challenging to interpret the profiling data because the observed data represent an average over different RNA conformations and isoforms with different abundance. To address this challenge, we developed an RNA structurome quantification method (RSQ) to statistically model the distribution of reads over both isoforms and RNA conformations, and thus provide accurate quantification of the isoform-specific structurome. The quantified RNA structurome enables the comparison of isoform-specific conformations between different conditions, the exploration of RNA conformation variation affected by single nucleotide polymorphism (SNP) , and the measurement of RNA accessibility for binding of either small RNAs in RNAi-based assays or RNA binding protein in transcriptional regulation. The model used in our method sheds new light on the potential impact of the RNA structurome on gene regulation

    Metabolomic and transcriptomice analyses of flavonoid biosynthesis in apricot fruits

    Get PDF
    IntroductionFlavonoids, as secondary metabolites in plants, play important roles in many biological processes and responses to environmental factors.MethodsApricot fruits are rich in flavonoid compounds, and in this study, we performed a combined metabolomic and transcriptomic analysis of orange flesh (JN) and white flesh (ZS) apricot fruits.Results and discussionA total of 222 differentially accumulated flavonoids (DAFs) and 15855 differentially expressed genes (DEGs) involved in flavonoid biosynthesis were identified. The biosynthesis of flavonoids in apricot fruit may be regulated by 17 enzyme-encoding genes, namely PAL (2), 4CL (9), C4H (1), HCT (15), C3’H (4), CHS (2), CHI (3), F3H (1), F3’H (CYP75B1) (2), F3’5’H (4), DFR (4), LAR (1), FLS (3), ANS (9), ANR (2), UGT79B1 (6) and CYP81E (2). A structural gene-transcription factor (TF) correlation analysis yielded 3 TFs (2 bHLH, 1 MYB) highly correlated with 2 structural genes. In addition, we obtained 26 candidate genes involved in the biosynthesis of 8 differentially accumulated flavonoids metabolites in ZS by weighted gene coexpression network analysis. The candidate genes and transcription factors identified in this study will provide a highly valuable molecular basis for the in-depth study of flavonoid biosynthesis in apricot fruits

    Observation of whistler wave instability driven by temperature anisotropy of energetic electrons on EXL-50 spherical torus

    Full text link
    Electromagnetic modes in the frequency range of 30-120MHz were observed in electron cyclotron wave (ECW) steady state plasmas on the ENN XuanLong-50 (EXL-50) spherical torus. These modes were found to have multiple bands of frequencies proportional to the Alfv\'en velocity. This indicates that the observed mode frequencies satisfy the dispersion relation of whistler waves. In addition, suppression of the whistler waves by the synergistic effect of Lower Hybrid Wave (LHW) and ECW was also observed. This suggests that the whistler waves were driven by temperature anisotropy of energetic electrons. These are the first such observations (not runaway discharge) made in magnetically confined toroidal plasmas and may have important implications for studying wave-particle interactions, RF wave current driver, and runaway electron control in future fusion devices

    Solenoid-free current drive via ECRH in EXL-50 spherical torus plasmas

    Full text link
    As a new spherical tokamak (ST) designed to simplify engineering requirements of a possible future fusion power source, the EXL-50 experiment features a low aspect ratio (A) vacuum vessel (VV), encircling a central post assembly containing the toroidal field coil conductors without a central solenoid. Multiple electron cyclotron resonance heating (ECRH) resonances are located within the VV to improve current drive effectiveness. Copious energetic electrons are produced and measured with hard X-ray detectors, carry the bulk of the plasma current ranging from 50kA to 150kA, which is maintained for more than 1s duration. It is observed that over one Ampere current can be maintained per Watt of ECRH power issued from the 28-GHz gyrotrons. The plasma current reaches Ip>80kA for high density (>5e18me-2) discharge with 150kW ECHR heating. An analysis was carried out combining reconstructed multi-fluid equilibrium, guiding-center orbits of energetic electrons, and resonant heating mechanisms. It is verified that in EXL-50 a broadly distributed current of energetic electrons creates smaller closed magnetic-flux surfaces of low aspect ratio that in turn confine the thermal plasma electrons and ions and participate in maintaining the equilibrium force-balance
    • …
    corecore