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Abstract: 

The structure of RNA, which is considered to be a second layer of information alongside 

the genetic code, provides fundamental insights into the cellular function of both coding 

and non-coding RNAs. Several high-throughput technologies have been developed to 

profile transcriptome-wide RNA structures, i.e., the structurome. However, it is 

challenging to interpret the profiling data because the observed data represent an average 

over different RNA conformations and isoforms with different abundance. To address 

this challenge, we developed an RNA structurome quantification method (RSQ) to 

statistically model the distribution of reads over both isoforms and RNA conformations, 

and thus provide accurate quantification of the isoform-specific structurome. The 

quantified RNA structurome enables the comparison of isoform-specific conformations 

between different conditions, the exploration of RNA conformation variation affected by 

single nucleotide polymorphism (SNP) , and the measurement of RNA accessibility for 

binding of either small RNAs in RNAi-based assays or RNA binding protein in 

transcriptional regulation. The model used in our method sheds new light on the potential 

impact of the RNA structurome on gene regulation. 

 

Keywords:  RNA structurome quantification, gene transcription dynamics, RNA 

conformation dynamics, RNA structural profiling, next-generation sequencing, EM 

algorithm 
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Background 

RNA carries regulatory information not only within its primary sequence, but also within 

its secondary structures [1, 2]. The RNA secondary structure is fundamental to RNA 

transcription, splicing, localization and turnover [1, 3-9], and several profiling methods 

have been developed [10-20], mostly based on the technologies of applying chemical or 

enzymatic probes to identify the states of a bases of RNA as either single-strand, double-

strand or solvent-exposed [21, 22]. The coupling of next-generation sequencing 

technology to these methods has allowed them to be adapted to the scale of the whole 

transcriptome, yielding the first glimpse of the ‘RNA structurome’ [10-19], and raising 

the question of how structured regions control RNA functions and gene expression [2]. 

Several computational methods have been developed to reconstruct the structurome 

from RNA structural profiling data. For example, the SeqFold method uses the 

Boltzmann sampling method to generate a pool of RNA conformations, and clusters them 

into groups. The cluster centroid nearest to the structural profiling data is then considered 

as the structure of a gene [23]. MaxExpect integrates the free energy model with 

constraints inferred from RNA structural profiling data to predict structures with maximal 

expectation [24]. The RNAStructure method is designed for SHAPE data, which uses 

RNA structural profiling data as prior knowledge to constrain the RNA folding procedure 

[25]. These methods show good performance when used to predict the optimal structure 

given a single RNA sequence with experimentally inferred constraints. 

However, the circumstance on which these methods are based only occurs when the 

gene is transcribed into a single transcript. In eukaryotes, it is very common that many 

genes can produce multiple isoforms of transcripts through alternative splicing [26] and 
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alternative promoters [27, 28]. For example, nearly 80% of protein-coding genes have 

multiple isoforms (GENCODE V19 annotations [29]). For those genes, the RNA 

structural signals captured in the profiling analysis result from a mixture of structures 

folded by all expressed isoforms with potentially different levels of abundance. In 

addition, around 5% of protein-coding genes and 2.8% long intervening non-coding 

RNAs (lincRNAs) overlap with other genes in the exonic regions. The complexity of 

transcriptome makes it difficult to accurately quantification of RNA structures due to 

potential ambiguity of mapping the short sequencing reads from structural profiling data 

to the original isoform. (Figure 1A).  

Additional challenge in RNA structural profiling data analysis could come from the 

discovery that a single RNA sequence may fold into multiple conformations. In 

prokaryotes, multiple conformations are shown to be involved in the regulation of 

translation initiation [30] and protein synthesis [31, 32]. In eukaryotes, different 

conformations of a RNA mediated by RNA-binding proteins (RBPs) can change the 

accessibility of the RNA for other small regulatory RNAs, and switch the modes of gene 

translation [33, 34]. RNA conformation variation is also evident in high-throughput RNA 

profiling data, in which some RNA bases at certain positions show strong conflicts 

between single-strand and double-strand signals (Figure 1B). Some methods, such as 

Sfold [23], CENTROIDFOLD [35] and SeqFold [36], considered this conformation 

variations in their model and achieve improved prediction performance.  

This has motivated us to develop RNA structurome quantification (RSQ), a method 

based on a statistical model to systematically integrate transcriptome-wide RNA 

structural profiling information into RNA structurome modeling and quantification, while 
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considering both the alternative isoforms and conformations(Figure 1C). RSQ can 

analyze data from all mainstream high-throughput RNA structural profiling technologies, 

including PARS, FragSeq, SHAPE-Seq, DMS-Seq, icSHAPE, and also conventional 

low-throughput structural profiling data. We found that RSQ can interpret RNA structural 

profiling data better than the other existing method. The quantified RNA structurome can 

reveal the diverse roles of RNA structures in translation efficiency as well as in 

transcription initiation accuracy. RSQ also provides useful information for measuring 

RNA accessibility, which is essential for the identification of RBP targets, accurate 

interpretation of endogenous miRNA regulation, and rational designs of small interfering 

RNAs (siRNAs), antisense oligonucleotides and trans-cleaving ribozymes in gene knock-

down studies.  

 

Methods 

Generative model for single strand structural data using Expectation 

Maximization (EM) algorithm 

The least complicated case is a gene only transcribes a single transcript. We assume that 

the transcript with length L can fold into K conformations, and a set of reads from RNA 

structural profiling data (denoted as R)are uniformly and independently sampled from all 

positions in the single strand structures of the transcript, in total N reads. Then, similar to 

the RNA-Seq isoform quantification problem described in published studies [37, 38], an 

extended generative model for the EM algorithm can be constructed to assign the N reads 

to the K conformations. Each of the N reads can be associated with a latent variable 

�� � �, � � �1, … , 	
, indicating that the dth read is derived from conformation j. The 
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primary parameters of the model are θ=(θ1,…,θK), which correspond to the percentages 

of reads derived from every conformation. Given the conformation assignment Z, the 

likelihood of observing all reads R with parameter θ can be written as 

��; �, �� � ∏ ����|�����|����
��� .    (1.1) 

Under the uniform distribution assumption, the N reads can be grouped according to their 

coordinates on the transcript. We define a vector X ={X1, X2, … , Xi, … , XL} to represent 

the number of reads mapped at each position of transcript, and we have ∑ ��
�
��� � �. 

Similarly, the latent variable Zd for read �� mapped to the same position can be reshaped 

to an indicator matrix Zij, where Zij =1 if �� is mapped at position i,  and �� is derived 

from conformation j (Zd =j). A conformation profile matrix is also defined as Iij, where Iij 

=1 denotes that the ith position of the jth conformation is in a single-strand structure; 

otherwise Iij = 0. To simplify the denotation, let Lj denotes the total length of single-

strand structure (called effective length) of the jth conformation, where �� � ∑ ���
�
��� . 

Then the conditional probability of Zij =1 given θ is 

����|�����|��� � ����� � 1��� � ����  at position &|, �� � ������ � �|� 

                           � ���	�

��
. , & � 1,2, … , �;  � � 1,2, … , 	                               (1.2) 

Inference with the EM algorithm 

With the conformations and RNA structural profiling data for a transcript, the aim is to 

infer the model parameters θ, or alternative parameters π=(π1,…,πK), which correspond to 

the relative expression level of the K conformations. It is equivalent to inferring either θ 

or π. Whichever one is easier to be estimated, the other one can be calculated according 

to the relationship described below: 
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)� � 	�/��
∑ 	�/��
�
���

* �� � ����
∑ ����
�
���

 ,  j=1, …, K.              (2.1) 

Here, we choose to infer the parameters θ, which can be estimated by maximizing the 

likelihood of the observed data: 

��; +, �� � ∏ ,∑ ����� � 1������ at position &|��� � 1�
��� -��.�

���                       (2.2) 

We use the EM algorithm to find the maximum likelihood values for θ. In the expectation 

step, the expected value of the log-likelihood function is calculated with respect to the 

conditional distribution of latent variable Z given X under the current estimate of the 

parameters θ. In this case, the expected values of Zij, denoted as zij, can be calculated by 

.�� � /�|�,�,���- � 0 	���� ��⁄

∑ �	���� ��⁄ ��
���

� �����
∑ �����
�
���

,    ∑ ���

��� 1 0

0,                                            otherwise  & � 1, … , �;  � � 1, … , 	7 .                      
(2.3) 

The expected value of the log-likelihood can be written as 

/8ln ��; +, ��: � ∑ ∑ .���� ln ���	�

��

���

�
��� � ∑ ∑ .���� ln �����

∑ ����
�
���


���

�
��� .         (2.4) 

In the maximization step, equation (2.4) is maximized with respect to π(t), together with 

the constraints that ∑ )�

��� � 1: 

)����� � arg max� >∑ ∑ .���� ln �����

∑ ����
�
���


���

�
��� ? @�1 A ∑ )�


��� �B.             (2.5) 

Solving the above equation yields the updated parameters (Supplementary document 

S2.1): 

)�
����� � ∑ �������	 ���


���

∑ ∑ ��������	 ��⁄ �

���

�
���@ � 0  , j=1,…,K.     (2.6) 

The iteration runs until it reaches convergence (∑ |)�
����� A )�

���|
��� C D), or exceeds 

the preset maximum number of iterations. Because the parameters in 
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����at position &|��� � 1�  are predetermined by the conformation profiles, and thus the 

observed data likelihood is concave, the EM algorithm is guaranteed to find the optimal 

value .��
� to maximize likelihood [38].  

When the EM algorithm reaches convergence, the term 

E�
� � ∑ ��.��

��
��� , � � 1, … , 	.                                                                                    �2.7�                                

 is actually the total number of reads assigned to the jth conformation. From equations 

(2.1), the relative read abundance  θj can be written as 

��
� � ∑ ������



���

∑ ∑ ������


���

�
���

 , j=1,…,K.       (2.8) 

Then the abundance of the jth conformation can be estimated by 

G�
� � ∑ �� ����



���

��
., j=1,…,K                       (2.9)  

 

Model generalization: genes with multiple isoforms 

Genes with multiple isoforms require additional processing before applying the EM 

algorithm. Given a gene with M isoforms and total K conformations, we introduce the 

EFastS format (Supplementary document 1) in order to apply the EM algorithm to the 

conformations of these isoforms. The exons from M isoforms are collapsed to obtain a 

gene model which transcribes a single union transcript with length of L. For each of K 

conformation, if the position in the union transcript is excluded, it will be substituted with 

hyphen. (Figure 2A). The gene model and K aligned conformations can be used as the 

input for the generative model described above. When the EM algorithm converges, the 

expression level of the lth isoform, El, can be directly estimated from all the 

conformations belonging to this isoform (H ),. 
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/I � ∑ G�
�, J � 1, … , K.�!"�         (3.1) 

Besides directly estimating  El, the expression level of an isoform of a gene can be 

independently obtained from other measurement, such as transcripts per million reads 

(TPM) from RNA-seq. In that case, we could calculate the relative expression level of the 

lth isoform Pl by  

�I � #$%�

∑ #$%�

���

 , J � 1, … , K.       (3.2) 

and use it as constraints for parameter L in our EM algorithm by 

� � ∑ )��!"� , J � 1, … , K.                                         (3.3) 

 

Taking equation (3.3) as the  Lagrange multiplier in the maximization step yields: 

)����� � arg max& >∑ ∑ .���� ln �����

∑ ����
�
���


���

�
��� ? ∑ @ �� A ∑ )��!"� �%

 �� B. (3.4) 

The updated parameters (details in Supplementary document S2.2) are 

)�
����� M $� ∑ �����	�� ���


���

∑ �∑ �����	�� ��⁄

��� �����

, N� � H , J � 1, … , K    (3.5) 

  

Model generalization: genes with both single-strand and double-strand 

information 

For RNA structural profiling technologies producing both single-strand and double-

strand information, such as PARS data, the likelihood function can be written as the 

product of the likelihood functions of both the single-strand and double-strand data. Let S 

and D denote the sets of reads, and XS={XS,i, i=1,…,L} and XD={XD,i, i=1,…,L}  and  as 
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the number of reads mapped at each position from single-strand and double-strand data, 

respectively. The complete log-likelihood function is 

ln ��L; +, �� � ln ��L; +', �'� ? ln ��L; +(, �(�.     (4.1) 

Here, ZS and ZD are indicator matrices for reads in S and D sets separately. If genes have 

multiple isoforms, the constraints in equation (3.3) hold for both data types, given the 

estimated Pl from RNA-Seq data. Finally, maximization of the expected value of the 

complete log-likelihood function can be represented as 

)����� � arg max� >∑ ∑ ∑ .),���),� ln ��,����

∑ ����,�
�
���


���

�
���)!*+,,- ? ∑ @ �� A ∑ )��!"� �%

 �� B  

(4.2) 

The profile matrices (IS,ij, ID,ij) and effective length (LS,j, LD,j) are for single-strand and 

double-strand structures in jth conformation respectively.  The updated parameters are 

approximated (details in Supplementary document S2.3) as 

)�
����� M $� ∑ ∑ ���,��

��	��,�/��,��

�������,��

∑ ∑ ∑ ���,����	��,�/��,��

�������,������

, N� � H , J � 1, … , K .  (4.3)   

It should be noted that the total number of reads for each sample should not be 

scaled to the same because theoretically the samples with more observations (or reads) 

are supposed to contribute more during parameter estimation. Besides, reads for single-

strand and double-strand data may not contribute equally in the model, so weight can be 

applied to each sample before implementing the EM algorithm. The weights can be either 

obtained from prior knowledge, such as characteristics of RNase S1 and V1, or 

empirically estimated from the current data, such as fitness scores (Supplementary 

document 3.2) or predictability to known structures. For example, when the average 
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fitness scores OP+ QRS OP,  to known structures are used to weight two samples for single 

and double-strand information respectively, the updated parameters can be written as 

)�
����� M $� ∑ ∑ ���,��

��	./���,�/��,��

�������,��

∑ ∑ ∑ ���,����	./���,�/��,��

�������,������

N� � H , J � 1, … , K.        (4.4) 

 

Model generalization: Combining replicates from single and double strand 

data 

When RNA structural profiling data have biological replicates, the likelihood function 

can be written as a product of the likelihood functions of all the replicates. When weights 

are available, the reads can be adjusted by weights and then combined to run RSQ 

algorithm. Let S’ and D’ denotes the weights adjusted reads for single- and double-strand 

data, respectively, the complete log-likelihood function then can be written as 

ln ��L; +, �� � ln ��L; +'� , �'�� ? ln ��L; +(� , �(��                       (5.1) 

The updated parameters are similar to (4.3) 

             )�
����� M $� ∑ ∑ ���,��

��	��,�/��,��

��������,���

∑ ∑ ∑ ���,����	��,�/��,��

��������,�������

, N� � H , J � 1, … , K         (5.2) 

Simulation 

Theoretically, the sequencing reads were generated for a transcript or isoform from a 

mixture of conformations according to the relative conformation abundance π. To 

simulate this process, 100 RNAs were selected from the S. cerevisiae transcriptome, and 

conformations were predicted using Sfold [39].  For each RNA, the parameters π was 

preset and the relative read abundance θ was calculated based on (2.1). To evaluate how 

sequencing depth in structural profiling could affect the quantification performance, 
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varied number of reads were assigned to the conformations according to θ, and then 

randomly distributed to all effective positions of each conformation. Finally the RSQ 

method was applied to estimate LT . The average difference between the preset and 

estimated parameters was calculated to evaluate the performance of RSQ. To simulate the 

noise effects, varied percentages of noisy reads were randomly assigned to all the 

positions of a given transcript. When combining single-strand and double-strand reads, 

the two types of reads were sampled independently and combined to run RSQ. For the 

genes with multiple isoforms, the relative isoform expression level Pl was calculated by 

taking the sum of the preset  )�, N � � H  . 

 

RNA accessibility 

Based on the quantification results of RSQ, the accessibility of a given transcript can be 

quantified. Let Aij=1 denote that the ith position of the jth conformation is accessible; 

otherwise, Aij = 0. If transcript T has a miRNA binding target located from bs to be, 

1 U V0 C V1 U � , then its overall accessibility for the miRNA is calculated by  

Accessibility�miRNA, ]� � ∑ ^)� ∏ _��
2�
��2�

`
��� .      (6.1) 

The product of Aij from bs to be means that a continuous region is considered to be 

accessible only when all the positions within are accessible. 

 

Implementation 

RSQ was implemented as a Python package with C/C++ modules for RNA structural 

profiling data analysis. It is publicly available from Python Package Index 
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(https://pypi.python.org/pypi/rsq). RSQ provides a general solution from the raw RNA 

structural profiling data to the quantified RNA structurome (Figure 2B). RSQ has defined 

universal data formats, such as FastD, FastC, FastS and EFastS (see Supplementary 

document 1). These data formats are compatible with mainstream RNA structural 

profiling technologies. Documentation for data input, parameters and output are provided 

for the users of RSQ to easily generate the input files, tune the parameters according to 

their requirements and interpret the output results. Demonstration examples are also 

provided with the RSQ package.  

 

Results 

Evaluation of RSQ method 

Simulation data were used to evaluate the performance of the RSQ method. 100 

transcripts were selected from the S. cerevisiae transcriptome, and structures were 

predicted using Sfold [39]. The simulation results showed that RSQ exhibited excellent 

performance in deciphering the structural dynamics, even for genes with very low 

coverage (Figure 3A). RSQ also showed good tolerance to noise. Given data with noise 

levels up to 30%, more than 75% of predictions showed less than 10% difference when 

compared to the preset percentages (Figure 3B). In addition, the sample balance effect 

was evaluated by varying the ratio of the amount of single-strand and double-strand data. 

Although samples with balanced read coverages for single- and double-strand data 

showed slightly better performance when we assume the weights of both types of data are 

equal, the proportion of single-strand data doesn’t affect the overall prediction 

performance significantly. (Figure 3C). With the same amount of reads, RSQ was 
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performed better for genes with single transcript than those with multiple isoforms. When 

applying the independently measured expression levels of isoforms as constraints, the 

performance of RSQ can be improved. (Figure 3D).  

 

Profiling efficiency evaluation of existing RNA structural profiling data 

. To assess profiling efficiency of a variety of RNA structural profiling approaches [10, 

11, 16, 18, 19], fitness scores were calculated in yeast cell lines and in several human cell 

lines to evaluate the fitness of the RNA structural profiling data to the known structures 

(Figure 4). For the in vitro PARS data with both single-strand and double-strand 

information, the single-strand data always fit better than the double-strand data, which 

might result from the lower accessibility of RNase to double-strand regions. Although 

PARS data had additional double-strand information, when fit to known structures, the 

PARS data fit worse than in vivo DMS-Seq data. This indicates that the structural 

information captured in vitro was less representative of the real structural profiles.  

 

RNA structurome profile in human cell lines 

The human PARS data [10] for a family trio and DMS-Seq data [11] in fibroblast and 

K562 cell lines were used to explore the RNA structurome profile among cell lines. The 

data were analyzed by RSQ using the default parameters. The RNA conformation cluster 

profiles inferred from experimental data are different from those inferred from theoretical 

predictions, apparently because some of the theoretical structural clusters are not favored 

in physiological conditions. Additionally, without the context of in vivo interactions, such 
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as RBPs and small RNA interference, the theoretical minimum free energy (MFE) 

structure may not be the optimal structure in physiological conditions (Figure 5A). 

Certain clusters of the theoretical conformations are less observed in physiological 

conditions. Moreover, for each gene, theoretical structures that were not favored in one 

cell line might be favored in some other cell lines, indicating that the structurome also 

varies among cell lines in the conformation compositions (Figure 5B). 

The RSQ quantification result for the family trio showed that the percentages 

among cell lines correlated well, even between samples without a blood relationship 

(Figure 5C). Consistent with the structural percentages, the structural expression levels 

estimated from either single-strand or double-strand information also correlated well 

among cell lines (Figure 5C). These facts indicate that RNA conformation composition is 

a relatively stable feature in the RNA structurome among cell lines. To determine 

whether the variation in RNA conformations resulted from the variation in gene 

expression levels among cell lines, the relationship between gene expression abundance 

and RNA conformation composition was assessed (Figure 5D). The results showed that 

the difference in the RNA conformation composition does not directly result from the 

gene expression level variation among cell lines, indicating that other cell-specific 

regulatory events, including RBPs and small RNA interference, were involved in the 

determination of the RNA conformation composition. 

 

RNA accessibility 

Using the RSQ method, RNA accessibility for small interfering RNAs and RBPs can be 

quantitatively assessed in single base pair resolution. Taking the PARS data in the 
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GM12878 cell line as an example, RNA accessibility was calculated for 100 genes that 

only have single transcript. For comparison, RNA accessibility was also calculated for 

the top structures to mimic the SeqFold method [36] (Figure 6A). In general, the region 

right after the transcription start site (TSS) showed much higher accessibility, which 

reflects the prevailing occupancy of the Polymerase II transcription complex at the 

promoter region [36]. In addition, the top structures only contributed around half of the 

overall accessibility on average, indicating that RNA accessibility was inappropriately 

estimated (the top structures were exaggerated while the other structures were ignored) 

when only the top structure was considered for each transcript. 

To evaluate the effect of RNA conformation dynamics to miRNA-mRNA 

interaction, the accessibility scores were calculated for miRanda [40] predicted miRNA 

targets in the human transcriptome [41]. The results showed that although these predicted 

miRNA binding events have good scores when using the mirSVR algorithm [42] and 

have been conserved during evolution, only a portion of the binding sites were accessible 

in individual cases (Figure 6B).  

Constrained by the unique conformation assumption, some of the RBPs and small 

RNA interference events might be neglected. For example, hsa-miR-302a has a miRanda 

predicted binding site at the 3’ UTR of the COX7B gene, but the binding site is only 

accessible in the secondary optimal conformation, which contributes 31.7% of all the 

COX7B transcripts (Figure 6C). This interaction would be neglected if the accessibility 

of the optimal structure were used to represent that for all the COX7B transcripts. In 

addition, the quantified RNA conformation dynamics assist in interpreting small RNA 

regulation efficiency. In the case of COX7B gene, as most (68.3%) of its RNA molecules 
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are not accessible at the has-miR-302a target site, the miRNA regulation efficiency is 

greatly reduced in the corresponding cell line. 

 

Discussion 

We developed RSQ, a novel statistical model-based method for quantifying the RNA 

structurome using genome-wide RNA structural profiling data. The systematic and 

comprehensive analysis using the RSQ method outperformed previous analyses of RNA 

structural profiling data. RSQ shows higher tolerance to noise. The efficiency of the 

RNases varies depending on the versatile context of their digestion sites, thus substantial 

noise in local regions is inevitable. By calculating the maximum likelihood estimation 

(MLE) of the read number for each structure, the local noise was smoothed across the 

whole transcript, which led to more reliable results. Furthermore, RSQ makes use of 

experimental data to reduce the Boltzmann sampling space. Although the Boltzmann 

sampling method can nicely approximate the stationary distribution of conformation 

dynamics, for individual genes, the conformations theoretically predicted by Sfold 

(and/or other methods) may be inconsistent with RNA structural profiling data. By taking 

the top ranked signals (either single-strand or double-strand data) or mutual signals (both 

single-strand and double-strand data) as constraints into structure sampling/prediction, it 

guarantees the RSQ method to start with a more reliable structure sets. Finally and most 

importantly, RSQ provides a more meaningful interpretation of RNA structural profiling 

data based on the two layers of dynamics, the transcription dynamics and the RNA 

conformation dynamics, which is not provided by the existing analytic methods.   
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 With emerging genome-wide RNA structural profiling data, the RSQ method 

makes it possible to understand RNA functions on the level of the conformation 

composition. Evidence has shown that variation in the RNA conformation composition 

can regulate gene expression levels by affecting the transcription efficiency and mRNA 

decay [43]. More interestingly, the RNA conformation composition may play a role in 

the regular function(s) of long RNA. Analyses of existing RNA structural profiling data 

in several human cell lines showed that the RNA conformation composition profile is 

relatively stable among cell lines, and its variation is not significantly correlated to gene 

expression variations. These findings also indicated a general regulation mechanism 

through which an RNA transcript can tune its function profile to some extent by changing 

its conformation composition, without affecting its transcription rate. 

RNA structural profiling data are currently available for only a few cell lines. 

When the technologies are applied in more cell lines, especially tissue samples for 

various diseases, the quantified RNA structurome is expected to assist in deciphering 

disease-related RNA conformation composition variations. Genes without significant 

expression differences between samples might differ in RNA conformation composition. 

Moreover, armed with this genome-wide RNA structurome, the effects of single 

nucleotide variations (SNVs) on RNA conformation — dubbed ‘riboSNitches’ — can be 

surveyed [44]. Previously, a family trio study showed that riboSNitches constitute ~15% 

of all transcribed SNVs, which is far more than expected [10]. With the RSQ method, 

riboSNitches can be surveyed at a much finer resolution in consideration of gene 

isoforms and RNA conformation dynamics, which will allow for more accurate and 
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extensive analyses of how SNVs change gene functions in states of health versus disease 

conditions.  

A previous study reported that the structure-derived accessibility displays much higher 

correlation to translational efficiency than that derived from the raw sequencing signal 

[36]. RSQ further extends the structure-derived accessibility to that derived from the 

conformation dynamics. Instead of simply specifying the accessibility of a given region 

as “yes” or “no” from any single conformation for any single transcript transcribed from 

a gene locus, RSQ has the power to quantify the accessibility on the resolution of a single 

base pair based on the conformation dynamics for all the isoforms, which leads to more 

accurate evaluation of miRNA-mRNA or RBP-mRNA interactions and a more rational 

design of siRNAs in knockdown experiments.  
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Figure Legends 

Figure 1. Two layers of dynamics in the RNA structurome and schematic model of the RSQ 

method. (A) Gene transcription dynamics for protein-coding genes and lincRNAs. (B) RNA 

conformation dynamics. Taking EIF3I as an example, RNA structural profiling data show strong 

conflicting signals from single-strand and double-strand data in some regions, which are 

common among cell lines in a family trio. (C) Schematic workflow of RSQ method. RNA 

structural profiling technologies capture signals from a mixed pool of RNA conformations that 

are folded from all expressed isoforms for a given gene, losing the information of the 

conformation from which they are captured. To recover the information, the reads are piled onto 

the genome, and the EM algorithm is used to reassign the reads to the RNA conformation pools 

with the maximum probability. 

 

Figure 2. RSQ method. (A) Collapsing genes with multiple isoforms. Pl is the relative transcript 

abundance for the lth isoform and πj is the percentage of jth conformation. (B) Flowchart of RSQ 

method.  
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Figure 3. Boxplots of RSQ performance based on simulated data. RNA structures were predicted 

by Sfold [45] for 100 S. cerevisiae RNAs. (A) Read coverage effects for RSQ performance. 

Given RNA structures, read coverage ranging from 2 to 20 was randomly simulated from single-

strand structures. (B) Noise tolerance of RSQ method. The read coverage was set to 10. Varied 

percentages of noisy reads were generated randomly along the RNA sequence (100% means the 

amount of noise reads is equal to the amount of structural reads). (C) Single-strand and double-

strand data balance effect of RSQ method. The percentage of single-strand reads ranged from 0 

(double-strand reads only) to 1 (single-strand reads only). The total read coverage were 10 and 

no noise was added. (D) Performance for 15 genes with multiple isoforms. With isoform 

expression levels (TPM) used as constraints, the performance of RSQ was improved. 

 

Figure 4. Fitness analysis of existing RNA structural profiling data with respect to known RNA 

structures. PARS produced both single-strand and double-strand data, and DMS-Seq has only 

single-strand information. (A) Fitness score distribution of RNA structural profiling data in yeast. 

(B) Fitness score distribution of RNA structural profiling data in human cell lines. For DMS-Seq 

data in K562 cell line, DMS was applied in two different concentrations. 

 

Figure 5. Characteristics of RNA conformation dynamics in human cells. (A) Multidimensional 

scaling (MDS) of the clustering for 1,000 structures. The theoretical structures were grouped into 

3 clusters. By applying RSQ to RNA structural profiling data, only two clusters were supported 

by experimental data, and the minimum free energy (MFE) structure is not favored in 

experimental conditions. (B) Violin plot of number of theoretically predicted and experimentally 

supported clusters. Non-isoform genes with length < 3kb and coverage > 5nt in all samples were 
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used. (C) Scatterplot of structural percentages and gene expression levels among a family trio. 

Pearson correlation coefficient was shown. (D) Relationship between differential expression and 

differential conformation composition. Genes are split into two groups by whether they are 

differentially expressed (DE, absolute fold-change>1.5) or not (NDE, the rest) between samples, 

and then the RNA conformation composition difference (defined as maximum absolute 

difference of structural percentage for a given gene) was calculated for the two groups. The 

results show that the RNA conformation composition difference is not significant (Student’s t-

test) between DE and NDE genes (upper panel). In parallel, the genes are also split into two 

groups by whether they have different conformation composition (DCC, maximum absolute 

structure percentage difference >10%) or not (NDCC, the rest), and the absolute values of gene 

expression fold change (log2) are calculated for both groups. Similarly, no significant difference 

in expression fold change (Student’s t-test) is observed between the DCC and NDCC groups 

(lower panel). 

 

Figure 6. RNA accessibility analysis. (A) RNA accessibility at the 5’ end of mRNAs. Solid line 

represents the accessibility calculated from all RSQ quantified structures; dashed line represents 

accessibility calculated from the top structure of each transcript. (B) Boxplot of miRNA target 

site number for each transcript. The miRNA target site data obtained from 

http://www.microrna.org/; used human miRNA target site predictions with “good SVR scores 

and conserved miRNA” in August 2010 release. Target sites were filtered out if without RNA 

structural profiling data support. Distributions of target site number per transcript before and 

after filtering were shown f. (C) Accessibility of has-miR_302a target regions in transcript of 

COX7B gene. Quantified RNA conformation abundances weres shown . Nucleotides in gray 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/043232doi: bioRxiv preprint first posted online Jun. 18, 2016; 

http://dx.doi.org/10.1101/043232
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wang Page 29 

Quantification of RNA structurome using next generation RNA structural profiling data 

 

circles are theoretically predicted hsa-miR-302a target sites. Paired bases are linked by arc lines. 

COX7B gene is found to be accessible for hsa-miR-302a to bind only in a less favored 

conformation. 
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