220 research outputs found

    Glycosylated Collagen Interaction with Cells Through DDRs and Integrin

    Get PDF
    https://openworks.mdanderson.org/sumexp22/1009/thumbnail.jp

    Develop a High-Throughput Screening Method to Identify C-P4H1 (Collagen Prolyl 4-Hydroxylase 1) Inhibitors from FDA-Approved Chemicals

    Get PDF
    Collagen prolyl 4-hydroxylase 1 (C-P4H1) is an α-ketoglutarate (α-KG)-dependent dioxygenase that catalyzes 4-hydroxylation of proline on collagen. C-P4H1-induced prolyl hydroxylation is required for proper collagen deposition and cancer metastasis. Therefore, targeting C-P4H1 is considered a potential therapeutic strategy for collagen-related cancer progression and metastasis. However, no C-P4H1 inhibitors are available for clinical testing, and the high content assay is currently not available for C-P4H1 inhibitor screening. In the present study, we developed a high-throughput screening assay by quantifying succinate, a byproduct of C-P4H-catalyzed hydroxylation. C-P4H1 is the major isoform of collagen prolyl 4-hydroxylases (CP4Hs) that contributes the majority prolyl 4-hydroxylase activity. Using C-P4H1 tetramer purified from the eukaryotic expression system, we showed that the Succinate-GloTM Hydroxylase assay was more sensitive for measuring C-P4H1 activity compared with the hydroxyproline colorimetric assay. Next, we performed high-throughput screening with the FDA-approved drug library and identified several new C-P4H1 inhibitors, including Silodosin and Ticlopidine. Silodosin and Ticlopidine inhibited C-P4H1 activity in a dose-dependent manner and suppressed collagen secretion and tumor invasion in 3D tissue culture. These C-P4H1 inhibitors provide new agents to test clinical potential of targeting C-P4H1 in suppressing cancer progression and metastasis

    Results of survey of stakeholders regarding knowledge of and attitudes towards feed intake, efficiency and genetic improvement concepts

    Get PDF
    Individual animal feed efficiency plays a key role in the profitability and sustainability of the US beef industry. During the growing and finishing phase of production, a 10% improvement in feed efficiency has a two-fold greater impact on profit than a 10% increase in rate of gain (Fox et al., 2001). The traits that beef producers routinely record are outputs which determine the value of product sold and not the inputs defining the cost of beef production. The inability to routinely measure feed intake and feed efficiency on large numbers of cattle has precluded the efficient application of selection despite moderate heritabilities (h2 = 0.16-0.46; Archer et al., 1999). Feed costs in calf feeding and yearling finishing systems account for approximately 66% and 77% of costs, respectively (Anderson et al., 2005).Feed costs account for approximately 65% of total beef production costs. Of the metabolizable energy required from conception to consumption of a beef animal, 72% is utilized during the cow-calf segment of production while 28% of calories are utilized in the calf growing and finishing phases of production (Ferrell and Jenkins, 1982). Of the calories consumed in the cow-calf segment, more than half are used for maintenance which presents a large selection target

    A hydraulically driven colonoscope

    Get PDF
    BACKGROUND: Conventional colonoscopy requires a high degree of operator skill and is often painful for the patient. We present a preliminary feasibility study of an alternative approach where a self-propelled colonoscope is hydraulically driven through the colon. METHODS: A hydraulic colonoscope which could be controlled manually or automatically was developed and assessed in a test bed modelled on the anatomy of the human colon. A conventional colonoscope was used by an experienced colonoscopist in the same test bed for comparison. Pressures and forces on the colon were measured during the test. RESULTS: The hydraulic colonoscope was able to successfully advance through the test bed in a comparable time to the conventional colonoscope. The hydraulic colonoscope reduces measured loads on artificial mesenteries, but increases intraluminal pressure compared to the colonoscope. Both manual and automatically controlled modes were able to successfully advance the hydraulic colonoscope through the colon. However, the automatic controller mode required lower pressures than manual control, but took longer to reach the caecum. CONCLUSIONS: The hydraulic colonoscope appears to be a viable device for further development as forces and pressures observed during use are comparable to those used in current clinical practice

    Miiuy Croaker Hepcidin Gene and Comparative Analyses Reveal Evidence for Positive Selection

    Get PDF
    Hepcidin antimicrobial peptide (HAMP) is a small cysteine-rich peptide and a key molecule of the innate immune system against bacterial infections. Molecular cloning and genomic characterization of HAMP gene in the miiuy croaker (Miichthys miiuy) were reported in this study. The miiuy croaker HAMP was predicted to encode a prepropeptide of 99 amino acids, a tentative RX(K/R)R cleavage motif and eight characteristic cysteine residues were also identified. The gene organization is also similar to corresponding genes in mammals and fish consisting of three exons and two introns. Sequence polymorphism analysis showed that only two different sequences were identified and encoded two proteins in six individuals. As reported for most other species, the expression level was highest in liver and an up-regulation of transcription was seen in spleen, intestine and kidney examined at 24 h after injection of pathogenic bacteria, Vibrio anguillarum, the expression pattern implied that miiuy croaker HAMP is an important component of the first line defense against invading pathogens. In addition, we report on the underlying mechanism that maintains sequences diversity among fish and mammalian species, respectively. A series of site-model tests implemented in the CODEML program revealed that moderate positive Darwinian selection is likely to cause the molecular evolution in the fish HAMP2 genes and it also showed that the fish HAMP1 genes and HAMP2 genes under different selection pressures

    Quality of life and home enteral tube feeding: a French prospective study in patients with head and neck or oesophageal cancer

    Get PDF
    A prospective study was conducted to evaluate the impact of home enteral tube feeding on quality of life in 39 consecutive patients treated for head and neck or oesophageal cancer at the Centre François Baclesse in Caen, France. Patients were taken as their own controls. Quality of life was evaluated using the EORTC QLQ-C30 core questionnaire, and the EORTC H&N35 and OES24 specific questionnaires. The feeding technique tolerance was evaluated using a questionnaire specifically developed for this study. Two evaluations were made, the first a week after hospital discharge (n = 39) and the second 3 weeks later (n = 30). Overall, the global health status/quality of life scale score slightly improved; among symptoms, scale scores that significantly improved (P< 0.05) concerned constipation, coughing, social functioning and body image/sexuality. The physical feeding technique tolerance was acceptable while the technique was psychologically less tolerated with two-thirds of the patients longing to have the tube removed. Onethird of the patients was also uncomfortable about their body image. Home enteral tube feeding was responsible for not visiting family or close relations in 15% of patients, and not going out in public in 23%. We conclude that home enteral tube feeding is a physically well accepted technique although a substantial proportion of patients may experience psychosocial distress. © 2000 Cancer Research Campaig

    Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.</p> <p>Results</p> <p>In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains <it>Apoa2 </it>gene. Sequencing analysis revealed polymorphisms of <it>Apoa2 </it>in TH mice, suggesting <it>Apoa2 </it>as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs.</p> <p>Conclusions</p> <p>We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6 intercross. Polymorphisms in <it>Apoa2 </it>gene are suggested to be responsible for the Chr 1 QTL linked to hypercholesterolemia and hypertriglyceridemia. Further, genetical genomic analysis led to potential candidate genes for the QTLs.</p

    Genetic Signature of Rapid IHHNV (Infectious Hypodermal and Hematopoietic Necrosis Virus) Expansion in Wild Penaeus Shrimp Populations

    Get PDF
    Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a widely distributed single-stranded DNA parvovirus that has been responsible for major losses in wild and farmed penaeid shrimp populations on the northwestern Pacific coast of Mexico since the early 1990's. IHHNV has been considered a slow-evolving, stable virus because shrimp populations in this region have recovered to pre-epizootic levels, and limited nucleotide variation has been found in a small number of IHHNV isolates studied from this region. To gain insight into IHHNV evolutionary and population dynamics, we analyzed IHHNV capsid protein gene sequences from 89 Penaeus shrimp, along with 14 previously published sequences. Using Bayesian coalescent approaches, we calculated a mean rate of nucleotide substitution for IHHNV that was unexpectedly high (1.39×10−4 substitutions/site/year) and comparable to that reported for RNA viruses. We found more genetic diversity than previously reported for IHHNV isolates and highly significant subdivision among the viral populations in Mexican waters. Past changes in effective number of infections that we infer from Bayesian skyline plots closely correspond to IHHNV epizootiological historical records. Given the high evolutionary rate and the observed regional isolation of IHHNV in shrimp populations in the Gulf of California, we suggest regular monitoring of wild and farmed shrimp and restriction of shrimp movement as preventative measures for future viral outbreaks
    corecore