55 research outputs found
Programmable coherent linear quantum operations with high-dimensional optical spatial modes
A simple and flexible scheme for high-dimensional linear quantum operations
on optical transverse spatial modes is demonstrated. The quantum Fourier
transformation (QFT) and quantum state tomography (QST) via symmetric
informationally complete positive operator-valued measures (SIC POVMs) are
implemented with dimensionality of 15. The matrix fidelity of QFT is 0.85,
while the statistical fidelity of SIC POVMs and fidelity of QST are ~0.97 and
up to 0.853, respectively. We believe that our device has the potential for
further exploration of high-dimensional spatial entanglement provided by
spontaneous parametric down conversion in nonlinear crystals
Universal linear optical operations on discrete phase-coherent spatial modes
Linear optical operations are fundamental and significant for both quantum
mechanics and classical technologies. We demonstrate a non-cascaded approach to
perform arbitrary unitary and non-unitary linear operations for N-dimensional
phase-coherent spatial modes with meticulously designed phase gratings. As
implemented on spatial light modulators (SLMs), the unitary transformation
matrix has been realized with dimensionalities ranging from 7 to 24 and the
corresponding fidelities are from 95.1% to 82.1%. For the non-unitary
operators, a matrix is presented for the tomography of a 4-level quantum system
with a fidelity of 94.9%. Thus, the linear operator has been successfully
implemented with much higher dimensionality than that in previous reports. It
should be mentioned that our method is not limited to SLMs and can be easily
applied on other devices. Thus we believe that our proposal provides another
option to perform linear operation with a simple, fixed, error-tolerant and
scalable scheme
The effect of water temperature on the pathogenicity of decapod iridescent virus 1 (DIV1) in Litopenaeus vannamei
Decapod iridescent virus 1 (DIV1) has caused huge losses to the shrimp breeding industry in recent years as a new shrimp virus. In this study, white leg shrimp, Litopenaeus vannamei, were cultured at different temperatures (26 ± 1 °C and 32 ± 1 °C) and the same salinity, then infected with DIV1 by intramuscular injection to determine the effects of water temperature on viral infection. The DIV1 copy counts in the gills, hepatopancreas, pleopods, intestines, and muscles of L. vannamei were measured in samples collected at 6, 12, and 24 h post-infection (hpi), and the survival rate of L. vannamei was assessed every 6 h after infection. At 96 hpi, the survival rates of L. vannamei in the high (32 ± 1 ℃) and standard (26 ± 1 ℃) water temperature groups were 2.22% and 4.44%, respectively. The peak time of mortality in the high-water temperature group was 6 h earlier than in the standard water temperature group. After 24 hours of DIV1 infection, the DIV1 copy counts in the standard water temperature treatment group were significantly higher than those in the high-water temperature treatment group. The tissues with the highest virus copy counts in the standard and high-temperature groups were the intestines (2.9×1011 copies/g) and muscles (7.0×108 copies/g). The effect of temperature on the pathogenicity of DIV1 differs from that of other previously studied viruses, such as white spot syndrome virus, Taura syndrome virus, and infectious hypodermal and hematopoietic necrosis virus, because the high-water temperature did not mitigate the damage caused by DIV1 infection
Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Ampelopsis grossedentata Stems: Process Optimization and Antioxidant Activity
Supercritical carbon dioxide (SC-CO2) extraction of bioactive compounds including flavonoids and phenolics from Ampelopsis grossedentata stems was carried out. Extraction parameters such as pressure, temperature, dynamic time and modifier, were optimized using an orthogonal array design of L9 (34), and antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and ferrous ion chelating (FIC) assay. The best conditions obtained for SC-CO2 extraction of flavonoids was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:3, v/v), and that for phenolics extraction was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:1, v/v). Meantime, flavonoids and phenolics were found to be mainly responsible for the DPPH scavenging activity of the extracts, but not for the chelating activity on ferrous ion according to Pearson correlation analysis. Furthermore, several unreported flavonoids such as apigenin, vitexin, luteolin, etc., have been detected in the extracts from A. grossedentata stems
Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China
Cooking emission is one of sources for ambient volatile organic compounds (VOCs), which is deleterious to air quality, climate and human health. These emissions are especially of great interest in large cities of East and Southeast Asia. We conducted a case study in which VOC emissions from kitchen extraction stacks have been sampled in total 57 times in the Megacity Shanghai. To obtain representative data, we sampled VOC emissions from kitchens, including restaurants of seven common cuisine types, canteens, and family kitchens. VOC species profiles and their chemical reactivities have been determined. The results showed that 51.26% ± 23.87% of alkane and 24.33 ± 11.69% of oxygenated VOCs (O-VOCs) dominate the VOC cooking emissions. Yet, the VOCs with the largest ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) were from the alkene and aromatic categories, accounting for 6.8–97.0% and 73.8–98.0%, respectively. Barbequing has the most potential of harming people's heath due to its significant higher emissions of acetaldehyde, hexanal, and acrolein. Methodologies for calculating VOC emission factors (EF) for restaurants that take into account VOCs emitted per person (EFperson), per kitchen stove (EFkitchen stove) and per hour (EFhour) are developed and discussed. Methodologies for deriving VOC emission inventories (S) from restaurants are further defined and discussed based on two categories: cuisine types (Stype) and restaurant scales (Sscale). The range of Stype and Sscale are 4124.33–7818.04 t/year and 1355.11–2402.21 t/year, respectively. We also found that Stype and Sscale for 100,000 people are 17.07–32.36 t/year and 5.61–9.95 t/year, respectively. Based on Environmental Kuznets Curve, the annual total amount of VOCs emissions from catering industry in different provinces in China was estimated, which was 5680.53 t/year, 6122.43 t/year, and 66,244.59 t/year for Shangdong and Guangdong provinces and whole China, respectively. Large and medium-scaled restaurants should be paid more attention with respect to regulation of VOCs
Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing
Indicine cattle, also referred to as zebu (Bos taurus indicus), play a central role in pastoral communities across a wide range of agro-ecosystems, from extremely hot semiarid regions to hot humid tropical regions. However, their adaptive genetic changes following their dispersal into East Asia from the Indian subcontinent have remained poorly documented. Here, we characterize their global genetic diversity using high-quality whole-genome sequencing data from 354 indicine cattle of 57 breeds/populations, including major indicine phylogeographic groups worldwide. We reveal their probable migration into East Asia was along a coastal route rather than inland routes and we detected introgression from other bovine species. Genomic regions carrying morphology-, immune-, and heat-tolerance-related genes underwent divergent selection according to Asian agro-ecologies. We identify distinct sets of loci that contain promising candidate variants for adaptation to hot semi-arid and hot humid tropical ecosystems. Our results indicate that the rapid and successful adaptation of East Asian indicine cattle to hot humid environments was promoted by localized introgression from banteng and/or gaur. Our findings provide insights into the history and environmental adaptation of indicine cattle
- …