3 research outputs found

    Global and Targeted Metabolomics Reveal That Bupleurotoxin, a Toxic Type of Polyacetylene, Induces Cerebral Lesion by Inhibiting GABA Receptor in Mice

    No full text
    Polyacetylenes are widely distributed in food plants and medicinal herbs, which have been shown to have highly neurotoxic effects. However, there were insufficient studies on the toxicity of these compounds. Thus, a series of experiments was designed to elucidate the toxicity mechanism of bupleurotoxin (BETX) as a representative polyacetylene. First, male BALB/c mice were intragastrically administered 2.5 mg/kg of bodyweight BETX once a day for seven consecutive days. The histopathological results showed that BETX could induce severe morphological damages in the brain hippocampus. We then used metabolomics approaches to screen serum samples from the control and BETX-treated groups. The global metabolomics results revealed 17 metabolites that were perturbed after BETX treatment. Four of these metabolites were then verified by targeted metabolomics. Bioinformatics analysis with the Ingenuity Pathway Analysis (IPA) software found a strong correlation between the GABA receptor signaling pathway and these metabolites. On the basis of these results, a validation test using a rat hippocampal neuron cell line was performed, and the results confirmed that BETX inhibited GABA-induced currents (<i>I</i><sub>GABA</sub>) in a competitive manner. In summary, our study illustrated the molecular mechanism of the toxicity of polyacetylenes. In addition, our study was instructive for the study of other toxic medical herbs

    Table1_Chuanzhitongluo capsule ameliorates microcirculatory dysfunction in rats: Efficacy evaluation and metabolic profiles.XLSX

    No full text
    Background: Ischemic stroke is a leading cause of mortality and disability worldwide. Microcirculatory dysfunction is the foremost hindrance for a good clinical prognosis in ischemic stroke patients. Clinical researches show that Chuanzhitongluo capsule (CZTL) has a curative effect during the recovery period of ischemic stroke, which contributes to a good prognosis. However, it is not known whether CZTL treats ischemic stroke by ameliorating microcirculation dysfunction.Objective: In this study, we investigated the influence of CZTL on microcirculation and its underlying mechanism.Methods: A rat model of acute microcirculatory dysfunction was established by stimuli of adrenaline and ice water. The microcirculatory damage in model rats and the efficacy of CZTL were assessed by detecting laser speckle contrast imaging, coagulation function, hemorheology, vasomotor factor and microcirculation function. The potential mechanism of CZTL action was explored by the untargeted metabolomic analysis based on ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry.Results: Laser speckle contrast imaging showed that model rats suffered low perfusion in ears, feet and tails, and CZTL treatment increased microcirculatory blood flow. Coagulation function detection results showed that CZTL diminished the reduction of thrombin time, prothrombin time, activated partial thromboplastin time and the elevated fibrinogen level caused by acute microcirculatory dysfunction. Furthermore, CZTL could recover the increased blood viscosity as well as the abnormal vasomotor and microcirculation function in rats with acute microcirculatory dysfunction. Metabolomics analysis indicated that CZTL might regulate sphingolipid metabolism and arachidonic acid metabolism to exert protective effects on microcirculation.Conclusion: These results elucidated that CZTL was highly effective against microcirculatory dysfunction and its potential mechanisms related with the modulation of sphingolipid and arachidonic acid metabolic pathways. The present study provided a new perspective on the clinical application of CZTL, and it contribute to explore novel therapeutic drug against microcirculatory dysfunction.</p

    Table2_Chuanzhitongluo capsule ameliorates microcirculatory dysfunction in rats: Efficacy evaluation and metabolic profiles.XLSX

    No full text
    Background: Ischemic stroke is a leading cause of mortality and disability worldwide. Microcirculatory dysfunction is the foremost hindrance for a good clinical prognosis in ischemic stroke patients. Clinical researches show that Chuanzhitongluo capsule (CZTL) has a curative effect during the recovery period of ischemic stroke, which contributes to a good prognosis. However, it is not known whether CZTL treats ischemic stroke by ameliorating microcirculation dysfunction.Objective: In this study, we investigated the influence of CZTL on microcirculation and its underlying mechanism.Methods: A rat model of acute microcirculatory dysfunction was established by stimuli of adrenaline and ice water. The microcirculatory damage in model rats and the efficacy of CZTL were assessed by detecting laser speckle contrast imaging, coagulation function, hemorheology, vasomotor factor and microcirculation function. The potential mechanism of CZTL action was explored by the untargeted metabolomic analysis based on ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry.Results: Laser speckle contrast imaging showed that model rats suffered low perfusion in ears, feet and tails, and CZTL treatment increased microcirculatory blood flow. Coagulation function detection results showed that CZTL diminished the reduction of thrombin time, prothrombin time, activated partial thromboplastin time and the elevated fibrinogen level caused by acute microcirculatory dysfunction. Furthermore, CZTL could recover the increased blood viscosity as well as the abnormal vasomotor and microcirculation function in rats with acute microcirculatory dysfunction. Metabolomics analysis indicated that CZTL might regulate sphingolipid metabolism and arachidonic acid metabolism to exert protective effects on microcirculation.Conclusion: These results elucidated that CZTL was highly effective against microcirculatory dysfunction and its potential mechanisms related with the modulation of sphingolipid and arachidonic acid metabolic pathways. The present study provided a new perspective on the clinical application of CZTL, and it contribute to explore novel therapeutic drug against microcirculatory dysfunction.</p
    corecore