86 research outputs found
Electronic states in heterostructures formed by ultranarrow layers
Low-energy electronic states in heterosrtuctures formed by ultranarrow layer
(single or several monolayers thickness) are studied theoretically. The host
material is described within the effective mass approximation and effect of
ultranarrow layers is taken into account within the framework of the transfer
matrix approach. Using the current conservation requirement and the inversion
symmetry of ultranarrow layer, the transfer matrix is written through two
phenomenological parameters. The binding energy of localized state, the
reflection (transmission) coefficient for the single ultranarrow layer case,
and the energy spectrum of superlattice are determined by these parameters.
Spectral dependency of absorption in superlattice due to photoexcitation of
electrons from localized states into minibands is strongly dependent on the
ultranarrow layers characteristics. Such a dependency can be used for
verification of the transfer matrix parameters.Comment: 7 pages, 7 figure
Effect of temperature on resonant electron transport through stochastic conduction channels in superlattices
We show that resonant electron transport in semiconductor superlattices with
an applied electric and tilted magnetic field can, surprisingly, become more
pronounced as the lattice and conduction electron temperature increases from
4.2 K to room temperature and beyond. It has previously been demonstrated that
at certain critical field parameters, the semiclassical trajectories of
electrons in the lowest miniband of the superlattice change abruptly from fully
localised to completely unbounded. The unbounded electron orbits propagate
through intricate web patterns, known as stochastic webs, in phase space, which
act as conduction channels for the electrons and produce a series of resonant
peaks in the electron drift velocity versus electric field curves. Here, we
show that increasing the lattice temperature strengthens these resonant peaks
due to a subtle interplay between thermal population of the conduction channels
and transport along them. This enhances both the electron drift velocity and
the influence of the stochastic webs on the current-voltage characteristics,
which we calculate by making self-consistent solutions of the coupled electron
transport and Poisson equations throughout the superlattice. These solutions
reveal that increasing the temperature also transforms the collective electron
dynamics by changing both the threshold voltage required for the onset of
self-sustained current oscillations, produced by propagating charge domains,
and the oscillation frequency.Comment: 8 figures, 12 page
Transmission of a Symmetric Light Pulse through a Wide QW
The reflection, transmission and absorption of a symmetric electromagnetic
pulse, which carrying frequency is close to the frequency of an interband
transition in a QW (QW), are obtained. The energy levels of a QW are assumed
discrete, one exited level is taken into account. The case of a wide QW is
considered when a length of the pulse wave, appropriate to the carrying
frequency, is comparable to the QW's width. In figures the time dependencies of
the dimensionless reflection, absorption are transmission are represented. It
is shown, that the spatial dispersion and a distinction in refraction indexes
influence stronger reflection.Comment: 8 pages,8 figures with caption
Modeling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects
We have proposed the phenomenological description of dielectric hysteresis
loops in ferroelectric semiconductors with charged defects and prevailing
extrinsic conductivity. Exactly we have modified Landau-Ginsburg approach and
shown that the macroscopic state of the aforementioned inhomogeneous system can
be described by three coupled equations for three order parameters. Both the
experimentally observed coercive field values well below the thermodynamic one
and the various hysteresis loop deformations (constricted and double loops)
have been obtained in the framework of our model. The obtained results
quantitatively explain the ferroelectric switching in such ferroelectric
materials as thick PZT films.Comment: 21 pages, 10 figures, sent to Journal of Physics: Condensed Matte
Genetic drivers of heterogeneity in type 2 diabetes pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p
Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
- …