27 research outputs found

    Is carrot consumption associated with a decreased risk of lung cancer? A meta-analysis of observational studies

    Get PDF
    Findings of epidemiological studies regarding the association between carrot consumption and lung cancer risk remain inconsistent. The present study aimed to summarise the current epidemiological evidence concerning carrot intake and lung cancer risk with a meta-analysis. We conducted a meta-analysis of case–control and prospective cohort studies, and searched PubMed and Embase databases from their inception to April 2018 without restriction by language. We also reviewed reference lists from included articles. Prospective cohort or case–control studies reporting OR or relative risk with the corresponding 95 % CI of the risk lung cancer for the highest compared with the lowest category of carrot intake. A total of eighteen eligible studies (seventeen case–control studies and one prospective cohort study) were included, involving 202 969 individuals and 5517 patients with lung cancer. The pooled OR of eighteen studies for lung cancer was 0·58 (95%CI 0·45, 0·74) by comparing the highest category with the lowest category of carrot consumption. Based on subgroup analyses for the types of lung cancer, we pooled that squamous cell carcinoma (OR 0·52, 95 % CI 0·19, 1·45), small-cell carcinoma (OR 0·43, 95 % CI 0·12, 1·59), adenocarcinoma (OR 0·34, 95 % CI 0·15, 0·79), large-cell carcinoma (OR 0·40, 95 % CI 0·10, 1·57), squamous and small-cell carcinoma (OR 0·85, 95 % CI 0·45, 1·62), adenocarcinoma and large-cell carcinoma (OR 0·20, 95 % CI 0·02, 1·70) and mixed types (OR 0·61, 95 % CI 0·46, 0·81). Exclusion of any single study did not materially alter the pooled OR. Integrated epidemiological evidence from observational studies supported the hypothesis that carrot consumption may decrease the risk of lung cancer, especially for adenocarcinoma

    Prevalence of workplace violence against healthcare workers: a systematic review and meta-analysis

    Get PDF
    We aim to quantitatively synthesise available epidemiological evidence on the prevalence rates of workplace violence (WPV) by patients and visitors against healthcare workers. We systematically searched PubMed, Embase and Web of Science from their inception to October 2018, as well as the reference lists of all included studies. Two authors independently assessed studies for inclusion. Data were double-extracted and discrepancies were resolved by discussion. The overall percentage of healthcare worker encounters resulting in the experience of WPV was estimated using random-effects meta-analysis. The heterogeneity was assessed using the I2 statistic. Differences by study-level characteristics were estimated using subgroup analysis and meta-regression. We included 253 eligible studies (with a total of 331 544 participants). Of these participants, 61.9% (95% CI 56.1% to 67.6%) reported exposure to any form of WPV, 42.5% (95% CI 38.9% to 46.0%) reported exposure to non-physical violence, and 24.4% (95% CI 22.4% to 26.4%) reported experiencing physical violence in the past year. Verbal abuse (57.6%; 95% CI 51.8% to 63.4%) was the most common form of non-physical violence, followed by threats (33.2%; 95% CI 27.5% to 38.9%) and sexual harassment (12.4%; 95% CI 10.6% to 14.2%). The proportion of WPV exposure differed greatly across countries, study location, practice settings, work schedules and occupation. In this systematic review, the prevalence of WPV against healthcare workers is high, especially in Asian and North American countries, psychiatric and emergency department settings, and among nurses and physicians. There is a need for governments, policymakers and health institutions to take actions to address WPV towards healthcare professionals globally

    Development of Sequence-Tagged Site Marker Set for Identification of J, JS, and St Sub-genomes of Thinopyrum intermedium in Wheat Background

    Get PDF
    Thinopyrum intermedium (2n = 6x = 42, JJJSJSStSt) is one of the important resources for the wheat improvement. So far, a few Th. intermedium (Thi)-specific molecular markers have been reported, but the number is far from enough to meet the need of identifying alien fragments in wheat-Th. intermedium hybrids. In this study, 5,877,409 contigs were assembled using the Th. intermedium genotyping-by-sequencing (GBS) data. We obtained 5,452 non-redundant contigs containing mapped Thi-GBS markers with less than 20% similarity to the wheat genome and developed 2,019 sequence-tagged site (STS) molecular markers. Among the markers designed, 745 Thi-specific markers with amplification products in Th. intermedium but not in eight wheat landraces were further selected. The distribution of these markers in different homologous groups of Th. intermedium varied from 47 (7/12/28 on 6J/6St/6JS) to 183 (54/62/67 on 7J/7St/7JS). Furthermore, the effectiveness of these Thi-specific markers was verified using wheat-Th. intermedium partial amphidiploids, addition lines, substitution lines, and translocation lines. Markers developed in this study provide a convenient, rapid, reliable, and economical method for identifying Th. intermedium chromosomes in wheat. In addition, this set of Thi-specific markers can also be used to estimate genetic and physical locations of Th. intermedium chromatin in the introgression lines, thus providing valuable information for follow-up studies such as alien gene mining

    Effects of Fly Ash and Chemical Admixtures on the Rheological Properties of High-Concentration Full-Tailing Filling Slurry

    No full text
    Good fluidity is the precondition to ensure the pipeline transportation of the filling slurry. The admixture in the filling slurry will affect the rheological properties of the slurry. In this paper, yield stress (YS), viscosity coefficient (VC), and expansion (ED) of the filling slurry were measured by the MCR52 rheometer and expansion tester, respectively, and the influence regularities of the three kinds of admixtures including fly ash (FA), polycarboxylate superplasticizer (PS), and polyethylene oxide (PEO) on the rheological properties of the filling slurry were obtained. The results show that when other conditions are fixed, the fluidity of the slurry becomes worse with the increase of the amount of fly ash but improves with the increase of the amount of the polycarboxylate superplasticizer; polyethylene oxide is not suitable for the improvement of the fluidity of the high-concentration full-tailing filling slurry, and the fluidity of the slurry becomes worse rapidly with the increase of the amount of polyethylene oxide

    Experimental Study on Rheological Properties and Strength Variation of High Concentration Cemented Unclassified Tailings Backfill

    No full text
    This experimental study presents the rheological properties and strength characteristics of cemented unclassified tailings backfill (CUTB). The particle size distribution and chemical properties of tailings from the Shizhuyuan lead-zinc mine were examined experimentally. A series of rheological properties and uniaxial compressive strength (UCS) tests were conducted to study the relations between the rheological properties of CUTB and two factors of cement-tailings ratio (c/t) and solid content (SD). The two-factor nonrepetitive analysis of variance (ANOVA) method was used to study the sensitivity of rheological properties to two factors of c/t and SD. Relations between UCS performance of CUTB and c/t, SD, and curing time (CT) were discussed. Results indicate that CUTB samples exhibit obvious shear thinning characteristics and the rheological process is the result of multiple rheological model composites. Yield stress and viscosity of CUTB increase with the increase of SD and c/t as quadratic. The solid content is the most important factor for the rheological properties of CUTB, followed by c/t. UCS of CUTB increases exponentially with the increase of SD and increases with c/t as quadratic. The larger the ratio of c/t, the greater the influence of the CT on the increasing strength of CUTB. The smaller the c/t, the slower the increase of the CUTB’s strength with the increase of the SD. The findings of this study can provide the efficient mix proportion of backfill slurry for the backfill mining design, so as to have better performance of the underground mining structure and reduce the cost of backfill mining

    Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer

    No full text
    To investigate the origins of hydroxyl groups in a polymeric dielectric and its applications in organic field-effect transistors (OFETs), a polar polymer layer was inserted between two polymethyl methacrylate (PMMA) dielectric layers, and its effect on the performance as an organic field-effect transistor (OFET) was studied. The OFETs with a sandwiched dielectric layer of poly(vinyl alcohol) (PVA) or poly(4-vinylphenol) (PVP) containing hydroxyl groups had shown enhanced characteristics compared to those with only PMMA layers. The field-effect mobility had been raised more than 10 times in n-type devices (three times in the p-type one), and the threshold voltage had been lowered almost eight times in p-type devices (two times in the n-type). The on-off ratio of two kinds of devices had been enhanced by almost two orders of magnitude. This was attributed to the orientation of hydroxyl groups from disordered to perpendicular to the substrate under gate-applied voltage bias, and additional charges would be induced by this polarization at the interface between the semiconductor and dielectrics, contributing to the accumulation of charge transfer

    Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage

    No full text
    Co3O4 nanorods were prepared by a facile hydrothermal method. Eco-friendly deionized water rather than organic solvent was used as the hydrothermal media. The as-prepared Co3O4 nanorods are composed of many nanoparticles of 30–50 nm in diameter, forming a finger-like morphology. The Co3O4 electrode shows a specific capacitance of 265 F g−1 at 2 mV s−1 in a supercapacitor and delivers an initial specific discharge capacity as high as 1171 mAh g−1 at a current density of 50 mA g−1 in a lithium ion battery. Excellent cycling stability and electrochemical reversibility of the Co3O4 electrode were also obtained

    A New Technique of Lattice Beam Construction with Pre-Anchoring for Strengthening Cut Slope: A Numerical Analysis of Temporary Stability during Excavation

    No full text
    In consideration of the temporary stability of the cutting slope during construction and its permanent stability under long-term service, a new technique of lattice beam construction with anchors pre-set in the slope from the original ground surface before cutting was proposed, and its construction process was briefly introduced. Compared with the model without pre-set anchors, the effectiveness of pre-setting anchors to strengthen the cutting slope during multi-excavation was verified in the numerical software FLAC3D. Various factors such as the factor of safety (FOS) and the maximum shear strain increment (MSSI) as well as the displacement for different stages were discussed. The results show that the anchors pre-set in the slope provide reinforcement step-by-step with excavations which changes the mechanical responses of the cutting slope and increases the factor of safety with a variation of 15.9–44.1% compared to the case without setting anchors. In addition, with excavations, the axial forces of the anchors pre-set in the stratum increase gradually, and the positions of the maximum axial forces gradually transfer from the vicinity of the cutting surface to the depth of the design slope. Numerical simulations prove that this new technique is beneficial for ensuring the temporary stability of the slope during excavations and is especially suitable for the advance anchorage of the cutting slope, in which the inclined original ground surface is cut at an angle steeper than it can stand safely and is close to the design slope surface after cutting. After the completion of slope excavation, the cast-in-place concrete lattice beam is immediately set on the design slope surface and connected with the anchor heads exposed on the cut slope surface to ensure the permanent stability of the slope. Therefore, this new technology has important guiding significance for both the temporary stability of slopes during construction and the permanent stability of slopes in service
    corecore