52 research outputs found

    Tube Shear Hydro-bending of Titanium Alloys

    Get PDF
    AbstractA shear hydro-bending process was proposed to form the titanium alloys tubes with small bending radius, which can not be integrally formed by the conventional bending methods. Numerical simulation and experimental research were conducted to investigate effects of internal pressure and feeding ratio on defects, strain state and thickness distribution. The results show that the sound part can be successfully manufactured as the internal pressure ranges from 0.2σs to 0.6σs and the feeding ratio ranges from 1.0 to 1.3, while the defects occur if the internal pressure and the feeding ratio exceed to these scopes. The strain state of the inner and outer sides of the bend are tensile and compressive, and the thicknesses are thinning and thickening, respectively, which is influenced prominently by the internal pressure and the feeding ratio. The strain state of the lateral side is shear and the thickness is generally invariable. It can be conducted that shear hydro-bending method is suitable to manufacture the titanium alloys tube with small bending radius. There is a process window for the internal pressure and the feeding ratio, in which the tubes can be successfully formed without defects

    EMLight: Lighting Estimation via Spherical Distribution Approximation

    Full text link
    Illumination estimation from a single image is critical in 3D rendering and it has been investigated extensively in the computer vision and computer graphic research community. On the other hand, existing works estimate illumination by either regressing light parameters or generating illumination maps that are often hard to optimize or tend to produce inaccurate predictions. We propose Earth Mover Light (EMLight), an illumination estimation framework that leverages a regression network and a neural projector for accurate illumination estimation. We decompose the illumination map into spherical light distribution, light intensity and the ambient term, and define the illumination estimation as a parameter regression task for the three illumination components. Motivated by the Earth Mover distance, we design a novel spherical mover's loss that guides to regress light distribution parameters accurately by taking advantage of the subtleties of spherical distribution. Under the guidance of the predicted spherical distribution, light intensity and ambient term, the neural projector synthesizes panoramic illumination maps with realistic light frequency. Extensive experiments show that EMLight achieves accurate illumination estimation and the generated relighting in 3D object embedding exhibits superior plausibility and fidelity as compared with state-of-the-art methods.Comment: Accepted to AAAI 202

    Detecting change in the Indonesian Seas

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Susanto, R. D., Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A. J., Zhou, H., Nagai, T., Ansong, J. K., Bourdalle-Badie, R., Chanuts, J., Lyard, F., Arbic, B. K., Ramdhani, A., & Setiawan, A. Detecting change in the Indonesian Seas. Frontiers in Marine Science, 6, (2019):257, doi:10.3389/fmars.2019.00257.The Indonesian seas play a fundamental role in the coupled ocean and climate system with the Indonesian Throughflow (ITF) providing the only tropical pathway connecting the global oceans. Pacific warm pool waters passing through the Indonesian seas are cooled and freshened by strong air-sea fluxes and mixing from internal tides to form a unique water mass that can be tracked across the Indian Ocean basin and beyond. The Indonesian seas lie at the climatological center of the atmospheric deep convection associated with the ascending branch of the Walker Circulation. Regional SST variations cause changes in the surface winds that can shift the center of atmospheric deep convection, subsequently altering the precipitation and ocean circulation patterns within the entire Indo-Pacific region. Recent multi-decadal changes in the wind and buoyancy forcing over the tropical Indo-Pacific have directly affected the vertical profile, strength, and the heat and freshwater transports of the ITF. These changes influence the large-scale sea level, SST, precipitation and wind patterns. Observing long-term changes in mass, heat and freshwater within the Indonesian seas is central to understanding the variability and predictability of the global coupled climate system. Although substantial progress has been made over the past decade in measuring and modeling the physical and biogeochemical variability within the Indonesian seas, large uncertainties remain. A comprehensive strategy is needed for measuring the temporal and spatial scales of variability that govern the various water mass transport streams of the ITF, its connection with the circulation and heat and freshwater inventories and associated air-sea fluxes of the regional and global oceans. This white paper puts forward the design of an observational array using multi-platforms combined with high-resolution models aimed at increasing our quantitative understanding of water mass transformation rates and advection within the Indonesian seas and their impacts on the air-sea climate system. IntroductionJS acknowledges funding to support her effort by the National Science Foundation under Grant Number OCE-1736285 and NOAA’s Climate Program Office, Climate Variability and Predictability Program under Award Number NA17OAR4310257. SH was supported by the National Natural Science Foundation of China (Grant 41776018) and the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SYS023). HP acknowledges support from the Australian Government’s National Environmental Science Programme. HZ acknowledges support from National Science Foundation under Grant No. 41876009. RS was supported by National Science Foundation Grant No. OCE-07-25935; Office of Naval Research Grant No. N00014-08-01-0618 and National Aeronautics and Space Administration Grant No. 80NSSC18K0777. SW, MF, and BS were supported by Center for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania

    Optimization of Processing Parameter and Mechanical Response Analysis of Advanced Heterogeneous Laminated Composites Using Ni/Al Foils by In Situ Reaction Synthesis

    No full text
    The advanced heterogeneous laminated composites were successfully fabricated by vacuum hot pressing using Ni and Al foils by in situ solid-state reaction synthesis. The effects of holding time and temperature on the microstructure and phase distribution were analyzed using scanning electron microscopy. Based on the optimized processing parameters, the microstructure and phase transformation, and the relationship between the microstructure and the corresponding mechanical properties were discussed in detail. To clarify the mechanical response of the laminated structure, the deformation microstructure and fracture characteristics were studied by scanning electron microscopy and electron backscatter diffraction. The results indicated that the evolution of the interfacial phases in the laminated composite occurred via the sequence: NiAl3, Ni2Al3, NiAl, and Ni3Al. An interface between the Ni and Ni3Al layers without cracks and voids formed due to the uniform pressure applied during hot pressing. The laminated composites hot pressed under 620 °C/5 MPa/1 h + 1150 °C/10 MPa/2 h exhibited the best ultimate tensile strength of 965 MPa and an elongation of 22.6% at room temperature. Extending the holding time during the second stage of the reaction synthesis decreased the thickness of the Ni3Al layer. This decreased the tensile strength of the laminated composite at 1000 °C but improved the tensile strength at room temperature. Moreover, the layer–thickness relationship of the laminated structure and the matching pattern were important factors affecting the strength and elongation of the laminated composites. The reinforcement form of the materials was not limited to a lamellar structure but could be combined with different forms of reinforcement to achieve continuous reinforcement over a wide range of temperatures

    New Developments of Hydroforming in China

    No full text

    Grain Coarsening and Texture Evolution of Pre-Stretched 2219 Aluminum Alloy Sheets during Subsequent Solution Treatment

    No full text
    During the two-pass stretch forming process for manufacturing of thin-walled aluminum alloy sheet components, abnormal grain growth may happen if an improper pre-deformation degree was conducted before solution heat treatment, which is negative to the performance and surface quality of the final components. In order to overcome this problem, the effect of pre-stretching deformation was investigated on the change of grain structures of 2219 aluminum alloy sheets. The 2219 aluminum alloy sheets were pre-stretched with various deformation degrees, and then were heated to 540 °C for about 50 min for solution treatment. The grain structures before and after solution treatment were characterized using an optical microscope (OM) and electron back scattering diffraction (EBSD). Results show that the grains grew up gradually during the solution treatment with an increase of pre-stretching. The critical pre-stretching degree is about 3%. Once the pre-deformation exceeds 3%, the grain growth is significant, especially when it reaches 5%. Moreover, the pre-stretching has little influence on the orientation distribution. Some near a copper texture {112}<111> were generated as the pre-stretching degree was increased to 5%. All the results suggest that the pre-stretching before solution treatment cannot be larger than 3% in the two-pass stretch forming of a 2219 aluminum sheet

    Deformation behaviour of laser-welded tube blank of TA15 Ti-alloy for gas forming at elevated temperature

    No full text
    Deformation behaviour of laser-welded tube blank of TA15 Ti-alloy at elevated temperature was investigated by both hot tensile tests and high pressure gas forming(HPGF). The hot tensile tests were carried out with four different specimens at 800 ∘C with an initial strain rate of 1.00×10−2 s−1 and HPGF test was performed at 800 ∘C with a constant pressure of 9.5MPa. The tensile results show that base material with equiaxed microstructure exhibited good formability and grain boundary sliding (GBS) accompanied with dynamic recrystallization (DRV) was the main deformation mechanism. However, because the weld bead has coarse columnar grains with fine acicular α′ in the β matrix, when the loading direction is parallel with the weld bead, the fine acicular α′ transformed into thicker α lamella and the aspect ratio decreased greatly, and voids formed along the initial coarse β grain boundaries. When the loading direction is vertical with the weld bead, the welded materials deformed little and the lamella structure thickened obviously after deformation. HPGF tests demonstrate that the laser-welded TA15 tube had a very good formability at 800 ∘C, and the maximum bulging ratio was as high as 77.4%

    Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes

    No full text
    Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD) to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening

    Deformation Optimization for Inconel718 Superalloy Sheet Hydroforming Numerically and Experimentally

    No full text
    For deep cylindrical cups with a large height-diameter ratio, it is difficult to be hydroformed in one stroke. Reverse deep drawing is necessary after deep drawing. Deformation optimization was performed to achieve a large drawing ratio and uniform thickness. An inconel718 superalloy deep cup was investigated numerically and experimentally. For a larger total drawing ratio 3.1, different deformations were analyzed for hydromechanical deep drawing and reverse hydromechanical deep drawing under the condition of different loading paths. Effects of deformations were discussed on the thickness. Typical defects were analyzed for different deformation. Optimal deformation was determined for hydromechanical deep drawing and reverse hydromechanical deep drawing. The results show that a superalloy cup with a total drawing ratio 3.1 could be successfully hydroformed, and the minimum thickness is 0.65 mm
    corecore