1,045 research outputs found

    Studies on X-ray Thomson Scattering from Antiferroquadrupolar Order in TmTe

    Full text link
    We study Thomson scattering from the antiferroquadrupole ordering phase in TmTe. On the basis of the group theoretical treatment, we classify the selection rules of the scattering intensity governed by the orientation of the scattering vector G. Then, numerical verification is performed by invoking the ground states which are deduced from a J=7/2 multiplet model. The obtained intensity varies drastically depending on the magnitude and direction of G. We also calculate the scattering intensities under the applied field for H//(001) and (110). Their results behave differently when the orientation of G is changed, which is ascribed to the difference of their primary order parameters; O_{2}^{0} and O_{2}^{2} for H // (001) and (110), respectively. We make critical comparisons between our results for TmTe and the experimental ones for CeB_6. First, we assert that the intensities expected from TmTe at several forbidden Bragg spots are sufficient enough to be experimentally detected. Second, their intensities at (7/2,1/2,1/2) differ significantly and may be attributed to the difference of the order parametersbetween the \Gamma_3-type (O_{2}^{2} and O_{2}^{0}) and \Gamma_5-type (O_{yz}, O_{zx}, and O_{xy}) components, respectively.Comment: 18 pages, 3 figures, to be published in J. Phys. Soc. Jp

    The inferior caval vein draining into the left atrial cavity : a rare case

    Get PDF
    The inferior vena cava (IVC) draining into the left atrium (LA) is exceedingly rare in the setting of the usual atrial arrangement (situs solitus). This article describes a patient with this unique anomaly, and its repair.peer-reviewe

    Self-Consistent Perturbation Theory for Thermodynamics of Magnetic Impurity Systems

    Full text link
    Integral equations for thermodynamic quantities are derived in the framework of the non-crossing approximation (NCA). Entropy and specific heat of 4f contribution are calculated without numerical differentiations of thermodynamic potential. The formulation is applied to systems such as PrFe4P12 with singlet-triplet crystalline electric field (CEF) levels.Comment: 3 pages, 2 figures, proc. ASR-WYP-2005 (JAERI

    Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe

    Full text link
    The physical properties of the antiferroquadrupolar state occurring in TmTe below TQ=1.8 K have been studied using neutron diffraction in applied magnetic fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is observed and, from its magnitude and direction for different orientations of H, an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5 K reveal that the magnetic structure is canted, in agreement with theoretical predictions for in-plane antiferromagnetism. Complex domain repopulation effects occur when the field is increased in the ordered phases, with discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001), September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical Society of Japan (2002

    Exciton Mediated Triplet Superconductivity in Th System PrOs4Sb12

    Full text link
    In PrOs4Sb12, the lowest-lying singlet and triplet states in a Pr 4f^2 configuration hybridize with conduction electrons having local a_u and t_u point-group symmetries. It is shown that for an attractive triplet pairing interaction, the orbital degrees of freedom of the t_u component are important. In addition, the Th point-group symmetry characteristic of skutterudites plays an important role in stabilizing triplet superconductivity.Comment: 4 pages, 2 figure

    Exciton Mediated Superconductivity in PrOs4Sb12

    Full text link
    The most important character of the exotic superconductor PrOs4Sb12 is the existence of low-lying excitations (excitons) with a finite energy gap and it appears as the magnetic field-induced order above 4.5 T. We focus on the a_u conduction band, which hybridizes with a Pr 4f^2 state strongly, coupled to the excitons. It results in an attractive interaction between the conduction electrons. The symmetry of the superconducting order parameter is determined by dispersion relation of the exciton. For the bcc system PrOs4Sb12, a d-wave state [kx ky + omega ky kz + omega^2 kz kx, omega=exp(pm i 2 pi/3)] is stabilized with broken time reversal symmetry.Comment: 4 page

    Effects of Impurities with Singlet-Triplet Configuration on Multiband Superconductors

    Full text link
    Roles of multipole degrees of freedom in multiband superconductors are investigated in a case of impurities whose low-lying states consist of singlet ground and triplet excited states, which is related to the experimental fact that the transition temperature TcT_{\rm c} is increased by Pr substitution for La in LaOs4_4Sb12_{12}. The most important contribution to the TcT_{\rm c} increase comes from the inelastic interband scattering of electrons coupled to quadrupole or octupole moments of impurities. It is found that a magnetic field modifies an effective pairing interaction and the scattering anisotropy appears in the field-orientation dependence of the upper critical field Hc2H_{{\rm c}2} in the vicinity of TcT_{\rm c}, although a uniaxial anisotropic field is required for experimental detection. This would be proof that the Pr internal degrees of freedom are relevant to the stability of superconductivity in (La1x_{1-x}Prx_x)Os4_4Sb12_{12}.Comment: 10 pages, 5 figures, to appear in J. Phys. Soc. Jp

    Dynamics of the Singlet-Triplet System Coupled with Conduction Spins -- Application to Pr Skutterudites

    Full text link
    Dynamics of the singlet-triplet crystalline electric field (CEF) system at finite temperatures is discussed by use of the non-crossing approximation. Even though the Kondo temperature is smaller than excitation energy to the CEF triplet, the Kondo effect appears at temperatures higher than the CEF splitting, and accordingly only quasi-elastic peak is found in the magnetic spectra. On the other hand, at lower temperatures the CEF splitting suppresses the Kondo effect and inelastic peak develops. The broad quasi-elastic neutron scattering spectra observed in PrFe_4P_{12} at temperatures higher than the quadrupole order correspond to the parameter range where the CEF splittings are unimportant.Comment: 16 pages, 12 figures, 1 tabl

    Theory of Coupled Multipole Moments Probed by X-ray Scattering in CeB6_6

    Full text link
    A minimal model for multipole orders in CeB6_6 shows that degeneracy of the quadrupole order parameters and strong spin-orbit coupling lead to peculiar temperature and magnetic-field dependences of the X-ray reflection intensity at superlattice Bragg points. Furthermore, the intensity depends sensitively on the surface direction. These theoretical results explain naturally recent X-ray experiments in phases II and III of CeB6_6. It is predicted that under weak magnetic field perpendicular to the (111) surface, the reflection intensity should change non-monotonically as a function of temperature.Comment: 4 pages, 5 figure

    Antiferro-quadrupole Ordering of CeB6_6 Studied by Resonant X-ray Scattering

    Full text link
    Under zero magnetic field, a quadrupolar order parameter at q_Q=(1/2,1/2,1/2) in a typical antiferro-quadrupole (AFQ) ordering compound CeB6 has been observed for the first time by means of a resonant X-ray scattering (RXS) te\ chnique. The RXS is observed at the 2p->5d dipole transition energy of the Ce L3-edge. Using this RXS technique to observe the pure order parameter of the AFQ state, the magnetic phase diagram of Phase II is first determined.Comment: 7 pages, 4 figure
    corecore