53 research outputs found

    Effects of nicotianamine on iron in the small intestine

    Get PDF
    Iron is an essential metal for all living organisms that is absorbed in the intestinal cells as a heme-chelated or free form. It is unclear how important plant-derived chelators, such as nicotianamine (NA), an organic small molecule that is ubiquitous in crops, vegetables, and various other foods, contribute to iron bioavailability in mammals. We performed electrophysiological assays with Xenopus laevis oocytes and radioactive tracer experiments with Caco-2 cells. The findings revealed that the proton-coupled amino acid transporter SLC36A1 (PAT1) transports iron in the form of NA-Fe (II) complex in vitro. Decreased expression of hPAT1 by RNA interference in Caco-2 cells reduced the uptake of NA-59Fe (II) complex. The uptake of inorganic 59Fe (II) was relatively unaffected. These results imply that PAT1 transports iron as a NA-Fe (II) complex. The rate of 59Fe absorption in the spleen, liver, and kidney was higher when mice were orally administered NA-59Fe (II) compared with free 59Fe (II). The profile of site-specific PAT1 expression in the mouse intestine coincided with those of NA and iron contents, which were the highest in the proximal jejunum. Orally administered NA-59Fe (II) complex in mice was detected in the proximal jejunum by thin layer chromatography. In contrast, much less 59Fe (or NA) was detected in the duodenum, where the divalent metal transporter SLC11A2 (DMT1) absorbs free Fe (II). The collective results revealed the role of PAT1 in NA-Fe (II) absorption in the intestine and potential implication of NA in iron uptake in mammals

    Impact of the day of the week on the discontinuation of broad-spectrum antibiotic prescriptions; a multi-centered observational study

    Get PDF
    To encourage and guide antimicrobial stewardship team (AST) activity and promote appropriate antibiotic use, we studied the impact of day of the week on the initiation and discontinuation of antibiotic administration. This was a multicenter observational study conducted at 8 Japanese hospitals from April 1 to September 30, 2019, targeting patients who underwent treatment with broad-spectrum antibiotics, such as anti-methicillin-resistant Staphylococcus aureus agents and anti-pseudomonal agents. We compared the weekly numbers of initiations and discontinuations of antibiotic prescription on each day of the week or on the days after a holiday. There was no statistical difference in the number of antibiotic initiations on both weekdays and the day after a holiday. However, antibiotic discontinuation was significantly higher from Tuesday onward than Monday and from the second day than the first day after a holiday. Similar trends were observed regardless of the categories of antibiotics, hospital and admission ward, and AST activity. This study suggests that broad-spectrum antibiotics tend to be continued during weekends and holidays and are most likely to be discontinued on Tuesday or the second day after a holiday. This was probably due to behavioral factors beyond medical indications, requiring further antimicrobial stewardship efforts in the future

    Treatment algorithm of ACTH deficiency

    Get PDF
    Objective : To examine diagnostic performance of corticotropin-releasing hormone (CRH) test combined with baseline dehydroepiandrosterone sulfate (DHEA-S) in patients with a suspect of central adrenal insufficiency. Methods : Patients (n=215) requiring daily or intermittent hydrocortisone replacement, or no replacement were retrospectively checked with their peak cortisol after CRH test and baseline DHEA-S. Results : None of 106 patients with the peak cortisol ≥ 17.5 μg / dL after CRH test required replacement, and all 64 patients with the peak cortisol < 10.0 μg / dL required daily replacement. Among 8 patients with 10.0 μg / dL ≤ the peak cortisol < 17.5 μg / dL and baseline DHEA-S below the reference range, 6 patients required daily replacement and 1 patient was under intermittent replacement. Among 37 patients with 10.0 μg / dL ≤ the peak cortisol < 17.5 μg / dL and baseline DHEA-S within the reference range, 10 and 6 patients were under intermittent and daily replacement, respectively. Conclusions : No patients with the peak cortisol ≥ 17.5 μg / dL required hydrocortisone replacement, and all patients with the peak cortisol below 10.0 μg / dL required daily replacement. Careful clinical evaluation was required to determine requirement for replacement in patients with 10.0 μg / dL ≤ the peak cortisol < 17.5 μg / dL even in combination with baseline DHEA-S

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    Virus-Infection or 5′ppp-RNA Activates Antiviral Signal through Redistribution of IPS-1 Mediated by MFN1

    Get PDF
    In virus-infected cells, RIG-I-like receptor (RLR) recognizes cytoplasmic viral RNA and triggers innate immune responses including production of type I and III interferon (IFN) and the subsequent expression of IFN-inducible genes. Interferon-β promoter stimulator 1 (IPS-1, also known as MAVS, VISA and Cardif) is a downstream molecule of RLR and is expressed on the outer membrane of mitochondria. While it is known that the location of IPS-1 is essential to its function, its underlying mechanism is unknown. Our aim in this study was to delineate the function of mitochondria so as to identify more precisely its role in innate immunity. In doing so we discovered that viral infection as well as transfection with 5′ppp-RNA resulted in the redistribution of IPS-1 to form speckle-like aggregates in cells. We further found that Mitofusin 1 (MFN1), a key regulator of mitochondrial fusion and a protein associated with IPS-1 on the outer membrane of mitochondria, positively regulates RLR-mediated innate antiviral responses. Conversely, specific knockdown of MFN1 abrogates both the virus-induced redistribution of IPS-1 and IFN production. Our study suggests that mitochondria participate in the segregation of IPS-1 through their fusion processes

    Dysregulation of IFN System Can Lead to Poor Response to Pegylated Interferon and Ribavirin Therapy in Chronic Hepatitis C

    Get PDF
    Despite being expensive, the standard combination of pegylated interferon (Peg-IFN)- α and ribavirin used to treat chronic hepatitis C (CH) results in a moderate clearance rate and a plethora of side effects. This makes it necessary to predict patient outcome so as to improve the accuracy of treatment. Although the antiviral mechanism of genetically altered IL28B is unknown, IL28B polymorphism is considered a good predictor of IFN combination treatment outcome

    Current status of space gravitational wave antenna DECIGO and B-DECIGO

    Get PDF
    Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is the future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could be produced during the inflationary period right after the birth of the universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in the heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry-Perot Michelson interferometers with an arm length of 1,000 km. Three clusters of DECIGO will be placed far from each other, and the fourth cluster will be placed in the same position as one of the three clusters to obtain the correlation signals for the detection of the primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder of DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand the multi-messenger astronomy.Comment: 10 pages, 3 figure

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    Current status of space gravitational wave antenna DECIGO and B-DECIGO

    Get PDF
    The Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is a future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could have been produced during the inflationary period right after the birth of the Universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the Universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry–Pérot Michelson interferometers with an arm length of 1000 km. Three DECIGO clusters will be placed far from each other, and the fourth will be placed in the same position as one of the other three to obtain correlation signals for the detection of primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder for DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand multi-messenger astronomy
    corecore