33 research outputs found

    Acoustic attenuation in magnetic insulator films: dynamical phase-field simulations

    Full text link
    A magnon and a phonon are the quanta of spin wave and lattice wave, respectively, and they can hybridize into a magnon polaron when their frequencies and wavenumbers are equal. Guided by an analytically calculated magnon polaron dispersion, we perform dynamical phase-field simulations to investigate the effects of magnon polaron formation and magnetic damping on the attenuation of a bulk acoustic wave in a magnetic insulator film. It is found that a stronger magnon-phonon hybridization leads to a larger attenuation, whereas the largest attenuation occurs under an intermediate magnetic damping coefficient. The simulations also demonstrate a dynamic rotation of the acoustic wave polarization by almost 90{\deg} and a dynamic magnetic-field control of acoustic wave antennation, which have potential applications in nonreciprocal acoustic devices.Comment: 5 figure

    Serum level of S100A8/A9 as a biomarker for establishing the diagnosis and severity of community-acquired pneumonia in children

    Get PDF
    BackgroundS100A8/A9, which is a member of S100 proteins, may be involved in the pathophysiology of Community-acquired pneumonia (CAP) that seriously threatens children’s health. However, circulating markers to assess the severity of pneumonia in children are yet to be explored. Therefore, we aimed to investigate the diagnostic performance of serum S100A8/A9 level in determining the severity of CAP in children.MethodsIn this prospective and observational study, we recruited 195 in-hospital children diagnosed with CAP. In comparison, 63 healthy children (HC) and 58 children with non-infectious pneumonia (pneumonitis) were included as control groups. Demographic and clinical data were collected. Serum S100A8/A9 levels, serum pro-calcitonin concentrations, and blood leucocyte counts were quantified.ResultsThe serum S100A8/A9 levels in patients with CAP was 1.59 ± 1.32 ng/mL, which was approximately five and two times higher than those in healthy controls and those in children with pneumonitis, respectively. Serum S100A8/A9 was elevated parallelly with the clinical pulmonary infection score. The sensitivity, specificity, and Youden’s index of S100A8/A9 ≥1.25 ng/mL for predicting the severity of CAP in children was optimal. The area under the receiver operating characteristic curve of S100A8/A9 was the highest among the indices used to evaluate severity.ConclusionsS100A8/A9 may serve as a biomarker for predicting the severity of the condition in children with CAP and establishing treatment grading

    Bivalirudin exerts antiviral activity against respiratory syncytial virus-induced lung infections in neonatal mice

    Get PDF
    Respiratory syncytial virus (RSV) is the most common cause of small airways inflammation in the lungs (bronchiolitis) in neonates and immunocompromised adults. The deregulation of cellular and plasma components leads to increased morbidity and mortality. The activation of the clotting cascade plays a key role in the progression of disease severity during viral infection. The current investigation studied the effect of bivalirudin (BR) on the progression and cellular effects of RSV-induced infection in the neonatal mice model. Mice (5–7 days old) were inoculated intranasally with RSV with or without BR administration (2 mg/kg/day, i.v.) for 2 weeks. Tissue histopathology, inflammatory signalling genes such as TLR, and cytokines were analyzed. The results showed pneumocytes exhibiting nuclear pyknosis, cellular infiltration in lung tissue and increased lung titers in RSV-infected mice compared to the control. Furthermore, RSV-infected mice demonstrated altered clotting parameters such as D-dimer, soluble thrombomodulin, and increased inflammatory cytokines IL-5, 6, IFN-γ, IL-13, and CXCL1. Additionally, the mRNA expression analysis displayed increased levels of IL-33, TLR3, and TLR7 genes in RSV-infected lung tissue. Further, to delineate the role of micro RNAs, the qRT-PCR analysis was done, and the results displayed an increase in miR-136, miR-30b, and let-7i. At the same time, the down-regulated expression of miR-221 in RSV-infected mice compared to the control. BR treatment reduced the cellular infiltration with reduced inflammatory cytokines and normalized clotting indices. Thus, the study shows that RSV infection induces specific changes in lung tissue and the clotting related signalling mechanism. Additionally, BR treatment significantly reduces bronchiolitis and prevents the severity of the infections suggesting that BR can possibly be used to reduce the viral-mediated infections in neonates

    Reconstructing Floorplans from Point Clouds Using GAN

    No full text
    This paper proposed a method for reconstructing floorplans from indoor point clouds. Unlike existing corner and line primitive detection algorithms, this method uses a generative adversarial network to learn the complex distribution of indoor layout graphics, and repairs incomplete room masks into more regular segmentation areas. Automatic learning of the structure information of layout graphics can reduce the dependence on geometric priors, and replacing complex optimization algorithms with Deep Neural Networks (DNN) can improve the efficiency of data processing. The proposed method can retain more shape information from the original data and improve the accuracy of the overall structure details. On this basis, the method further used an edge optimization algorithm to eliminate pixel-level edge artifacts that neural networks cannot perceive. Finally, combined with the constraint information of the overall layout, the method can generate compact floorplans with rich semantic information. Experimental results indicated that the algorithm has robustness and accuracy in complex 3D indoor datasets; its performance is competitive with those of existing methods

    Timely and Durable Polymer Modified Patching Materials for Pothole Repairs in Low Temperature and Wet Conditions

    No full text
    Aiming to solve the contradiction between the workability and performance of pothole patching using cold mixtures, this paper proposed new patching materials based on the microcapsule technique and polymer reinforcement, namely cold mixtures with polymer modified asphalt and dense graded (DG) of aggregates (PADG) mixtures. Laboratory tests were conducted to compare the PADG mixtures with commonly used DG mixtures and open graded (OG) mixtures concerning workability, storability, cohesion, stability, and durability of each mixture. The results found that the PADG mixtures were satisfactory in their workability and storability and were as satisfactory as the OG mixtures. Meanwhile, stability and durability of the PADG mixtures was better than the DG mixtures and OG mixtures, i.e., the PADG mixtures showed stability in the conditions of the timeliness, low temperature, and immersion, as well as the freeze-thaw resistance and wear resistance in wet conditions. Therefore, it can be concluded that PADG mixtures are applicable in timely and durable pothole repairs in low temperatures and wet conditions

    Correction to “Monodisperse Carbon Sphere-Constructed Pomegranate-Like Structures for High-Volumetric-Capacitance Supercapacitors”

    No full text
    Page 4014. Figure 4c should be the gravimetric capacitance of PCS as a function of mass loading. Figure 4 of the original paper should be replaced with the revised figure below. (Figure Presented)

    MiR-155 promotes compensatory lung growth by inhibiting JARID2 activation of CD34+ endothelial progenitor cells.

    No full text
    Bone marrow-derived CD34-positive (CD34+) endothelial progenitor cells (EPCs) has unique functions in the mechanism of compensatory lung growth (CLG). The content of this study is mainly to describe the effect of microRNA (miR)-155 in the mechanisms of EPCs and CLG. Our study found that transfection of miR-155 mimic could promote EPC proliferation, migration and tube formation, while transfection of miR-155 inhibitor had the opposite effect. It was also found that transfection of pc-JARID2 inhibited EPC proliferation, migration and tube formation, while transfection of si-JARID2 had the opposite effect. miR-155 can target and negatively regulate JARID2 expression. Overexpression of JARID2 weakened the promoting effects of miR-155 mimic on EPC proliferation, migration, and tubular formation, while silencing JARID2 weakened the inhibitory effects of miR-155 inhibitors on EPC proliferation, migration, and tubular formation. Transplantation of EPCs transfected with miR-155 mimic into the left lung model effectively increased lung volume, total alveolar number, diaphragm surface area, and lung endothelial cell number, while transplantation of EPCs co-transfected with miR-155 mimic and pc-JARID2 reversed this phenomenon. Overall, we found that miR-155 activates CD34+ EPC by targeting negative regulation of JARID2 and promotes CLG
    corecore