2 research outputs found

    Strong Adhesion and Friction Coupling in Hierarchical Carbon Nanotube Arrays for Dry Adhesive Applications

    No full text
    The adhesion and friction coupling of hierarchical carbon nanotube arrays was investigated with a hierarchical multiscale modeling approach. At device level, vertically aligned carbon nanotube (VA-CNT) arrays with laterally distributed segments on top were analyzed via finite element methods to determine the macroscopic adhesion and friction force coupling. At the nanoscale, molecular dynamics simulation was performed to explore the origin of the adhesion enhancement due to the existence of the laterally distributed CNTs. The results show interfacial adhesion force is drastically promoted by interfacial friction force when a single lateral CNT is being peeled from an amorphous carbon substrate. By fitting with experiments, we find that under shearing loadings the maximum interfacial adhesion force is increased by a factor of ∼5, compared to that under normal loadings. Pre-existing surface asperities of the substrate have proven to be the source of generating large interfacial friction, which in turn results in an enhanced adhesion. The critical peeling angles derived from the continuum and nano- levels are comparable to those of geckos and other synthetic adhesives. Our analysis indicates that the adhesion enhancement factor of the hierarchically structured VA-CNT arrays could be further increased by uniformly orienting the laterally distributed CNTs on top. Most importantly, a significant buckling of the lateral CNT at peeling front is captured on the molecular level, which provides a basis for the fundamental understanding of local deformation, and failure mechanisms of nanofibrillar structures. This work gives an insight into the durability issues that prevent the success of artificial dry adhesives

    Natural Particulates Inspired Specific-Targeted Codelivery of siRNA and Paclitaxel for Collaborative Antitumor Therapy

    No full text
    The effective combination of drugs promoting antiangiogenesis and apoptosis effects has proven to be a promising collaborative tumor antidote; and the codelivery of small interfering RNA (siRNA) and chemotherapy agents within one efficient vehicle has gained more attention over single regimen administration. Herein, vascular endothelial growth factor specific siRNA (siVEGF) and paclitaxel (PTX) were introduced as therapeutic companions and coencapsulated into naturally mimic high-density lipoproteins (rHDL/siVEGF-PTX), so that various mechanisms of treatment can occur simultaneously. The terminal nanoparticles share capacity of specific-targeting to tumor cells overexpressed scavenger receptor class B type I (SR-BI) and deliver siVEGF and PTX into cytoplasm by a nonendocytosis mechanism. By exchanging HDL core lipids with hydrophobic therapeutics, rHDL/siVEGF-PTX possessed particle size of ∼160 nm, surface potential of ∼−20 mV, and desirable long-term storage stability. <i>In vitro</i> results confirmed that the parallel activity of siVEGF and PTX displayed enhanced anticancer efficacy. The half-maximal inhibitory concentration (IC<sub>50</sub>) of rHDL/siVEGF-PTX toward human breast cancer MCF-7 cell is 0.26 μg/mL (PTX concentration), which presents a 14.96-fold increase in cytotoxicity by taking Taxol as comparison. Moreover, <i>in vivo</i> results further demonstrated that rHDL/siVEGF-PTX performed enhanced tumor growth inhibition via natural targeting pathway, accompanied by remarkable inhibition of neovascularization <i>in situ</i> caused by siVEGF silencing in down-regulation of VEGF proteins. On the premise of effective drug codelivery, rHDL/siVEGF-PTX demonstrated high tumor targeting for collaborative antitumor efficacy without side effects after systemic administration, and this bioinspired strategy could open an avenue for exploration of combined anticancer therapy
    corecore