53 research outputs found

    Triptolide Transcriptionally Represses HER2 in Ovarian Cancer Cells by Targeting NF- κ

    Get PDF
    Triptolide (TPL) inhibits the proliferation of a variety of cancer cells and has been proposed as an effective anticancer agent. In this study, we demonstrate that TPL downregulates HER2 protein expression in oral, ovarian, and breast cancer cells. It suppresses HER2 protein expression in a dose- and time-dependent manner. Transrepression of HER2 promoter activity by TPL is also observed. The interacting site of TPL on the HER2 promoter region is located between −207 and −103 bps, which includes a putative binding site for the transcription factor NF-κB. Previous reports demonstrated that TPL suppresses NF-κB expression. We demonstrate that overexpression of NF-κB rescues TPL-mediated suppression of HER2 promoter activity and protein expression in NIH3T3 cells and ovarian cancer cells, respectively. In addition, TPL downregulates the activated (phosphorylated) forms of HER2, phosphoinositide-3 kinase (PI3K), and serine/threonine-specific protein kinase (Akt). TPL also inhibits tumor growth in a mouse model. Furthermore, TPL suppresses HER2 and Ki-67 expression in xenografted tumors based on an immunohistochemistry (IHC) assay. These findings suggest that TPL transrepresses HER2 and suppresses the downstream PI3K/Akt-signaling pathway. Our study reveals that TPL can inhibit tumor growth and thereby may serve as a potential chemotherapeutic agent

    Tanshinone IIA Inhibits High Glucose-Induced Collagen Synthesis via Nuclear Factor Erythroid 2-Related Factor 2 in Cardiac Fibroblasts

    Get PDF
    Background/Aims: Diabetes is associated with increased incidence of myocardial dysfunction, which is partly characterized by interstitial and perivascular fibrosis. Cardiac fibroblasts have been identified as an important participant in the development of cardiac fibrosis. Exposure of cultured cardiac fibroblasts to high glucose resulted in increased collagen synthesis. Tanshinone IIA can alleviate the ventricular fibrosis that develops in a number of different experimental conditions. However, whether tanshinone IIA can prevent high glucose-induced collagen synthesis in cardiac fibroblasts remains unknown. The aim of this study was to evaluate the effects of tanshinone IIA on high glucose-induced collagen synthesis in cardiac fibroblasts. Methods: Rat cardiac fibroblasts were cultured in high glucose (25 mM) media in the absence or presence of tanshinone IIA and the changes in collagen synthesis, transforming growth factor-β1 (TGF-β1) production and related signaling molecules were assessed by 3H-proline incorporation, quantitative polymerase chain reaction, enzyme linked immunosorbent assay, and Western blotting. Results: The results indicate cardiac fibroblasts exposed to high glucose condition show increased cell proliferation and collagen synthesis and these effects were abolished by tanshinone IIA treatment. Furthermore, the inhibitory effect of tanshinone IIA on high glucose induced cell proliferation and collagen synthesis may be associated with its activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and the inhibition of TGF-β1 production and Smad2/3 phosphorylation. Conclusion: In summary, our results highlights the critical role tanshinone IIA plays as an antioxidant in attenuating high glucose-mediated collagen synthesis through inhibiting TGF-β1/Smad signaling in cardiac fibroblasts which provide a mechanistic basis for the clinical application of tanshinone IIA in the treating diabetic-related cardiac fibrosis

    Effects of Andrographolide on Intracellular pH Regulation, Cellular Migration, and Apoptosis in Human Cervical Cancer Cells (Running Tittle: Effects of Andrographolide on pH Regulators and Apoptosis in Cervical Cancer)

    No full text
    Cancer cells have been characterized with alkaline intracellular pH (pHi) values (≥7.2) to enable cancer proliferation, migration, and progression. The aim of the present study was to explore the concentration-dependent effects of Andrographolide, an active diterpenoid compound of herb Andrographis paniculata, on Na+/H+ exchanger isoform 1 (NHE1), cellular migration and apoptosis in human cervical cancer cells (HeLa). The pHi was detected by microspectrofluorometry method, and intracellular acidification was induced by NH4Cl prepulse technique. Viability and protein expression were determined by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Western blot, respectively. Human normal endocervical cells (End1), ectocervical cells (Ect1), and HeLa were bought commercially. The resting pHi value of HeLa (≈7.47) was significantly higher than that of End1 and Ect1 (≈7.30), and shifted from alkaline to acidic following acid/base impacts. In HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid | N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) -buffered superfusate, NHE1 and V-ATPase co-existed functionally for acid extrusion in HeLa, while only NHE1 existed functionally in End/Ect1. Andrographolide (3–1000 μM) concentration-dependently inhibited NHE1 activity. Cell-migration and expressions of NHE1, V-ATPase, PARP (poly-ADP-ribose-polymerase), pro-Caspase-3, and Bcl-2 were significantly reduced by pretreating with Andrographolide (≥100 μM) for 24–48 h in HeLa. Andrographolide inhibited cell viability of End1-cells/Ect1 and HeLa (≥100 and ≥30 μM, respectively). The present findings implicate the promising clinical applications of Andrographolide on cervical cancer treatment

    Intracellular Acid-extruding regulators and the effect of lipopolysaccharide in cultured human renal artery smooth muscle cells.

    No full text
    Homeostasis of the intracellular pH (pHi) in mammalian cells plays a pivotal role in maintaining cell function. Thus far, the housekeeping Na(+)-H(+) exchanger (NHE) and the Na(+)-HCO3(-) co-transporter (NBC) have been confirmed in many mammalian cells as major acid extruders. However, the role of acid-extruding regulators in human renal artery smooth muscle cells (HRASMCs) remains unclear. It has been demonstrated that lipopolysaccharide (LPS)-induced vascular occlusion is associated with the apoptosis, activating calpain and increased [Ca(2+)]i that are related to NHE1 activity in endothelia cells. This study determines the acid-extruding mechanisms and the effect of LPS on the resting pHi and active acid extruders in cultured HRASMCs. The mechanism of pHi recovery from intracellular acidosis (induced by NH4Cl-prepulse) is determined using BCECF-fluorescence in cultured HRASMCs. It is seen that (a) the resting pHi is 7.19 ± 0.03 and 7.10 ± 0.02 for HEPES- and CO2/HCO3(-)- buffered solution, respectively; (b) apart from the housekeeping NHE1, another Na(+)-coupled HCO3(-) transporter i.e. NBC, functionally co-exists to achieve acid-equivalent extrusion; (c) three different isoforms of NBC: NBCn1 (SLC4A7; electroneutral), NBCe1 (SLC4A4; electrogenic) and NBCe2 (SLC4A5), are detected in protein/mRNA level; and (d) pHi and NHE protein expression/activity are significantly increased by LPS, in both a dose- and time- dependent manner, but NBCs protein expression is not. In conclusion, it is demonstrated, for the first time, that four pHi acid-extruding regulators: NHE1, NBCn1, NBCe1 and NBCe2, co-exist in cultured HRASMCs. LPS also increases cellular growth, pHi and NHE in a dose- and time-dependent manner

    Urotensin II induces interleukin 8 expression in human umbilical vein endothelial cells.

    Get PDF
    BACKGROUND: Urotensin II (U-II), an 11-amino acid peptide, exerts a wide range of actions in cardiovascular systems. Interleukin-8 (IL-8) is secreted by endothelial cells, thereby enhancing endothelial cell survival, proliferation, and angiogenesis. However, the interrelationship between U-II and IL-8 as well as the detailed intracellular mechanism of U-II in vascular endothelial cells remain unclear. The aim of this study was to investigate the effect of U-II on IL-8 expression and to explore its intracellular mechanism in human umbilical vein endothelial cells. METHODS/PRINCIPAL FINDINGS: Primary human umbilical vein endothelial cells were used. Expression of IL-8 was determined by real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and luciferase reporter assay. Western blot analyses and experiments with specific inhibitors were performed to reveal the downstream signaling pathways as concerned. U-II increased the mRNA/protein levels of IL-8 in human umbilical vein endothelial cells. The U-II effects were significantly inhibited by its receptor antagonist [Orn(5)]-URP. Western blot analyses and experiments with specific inhibitors indicated the involvement of phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase in U-II-induced IL-8 expression. Luciferase reporter assay further revealed that U-II induces the transcriptional activity of IL-8. The site-directed mutagenesis indicated that the mutation of AP-1 and NF-kB binding sites reduced U-II-increased IL-8 promoter activities. Proliferation of human umbilical vein endothelial cells induced by U-II could be inhibited significantly by IL-8 RNA interference. CONCLUSION/SIGNIFICANCE: The results show that U-II induces IL-8 expression in human umbilical vein endothelial cells via p38 mitogen-activated protein kinase and extracellular signal-regulated kinase signaling pathways and IL-8 is involved in the U-II-induced proliferation of human umbilical vein endothelial cells

    Assessment of veterinary drugs in plants using pharmacokinetic approaches: The absorption, distribution and elimination of tetracycline and sulfamethoxazole in ephemeral vegetables.

    No full text
    The present study was carried out to demonstrate novel use of pharmacokinetic approaches to characterize drug behaviors/movements in the vegetables with implications to food safety. The absorption, distribution, metabolism and most importantly, the elimination of tetracycline (TC) and sulfamethoxazole (SMX) in edible plants Brassica rapa chinensis and Ipomoea aquatica grown hydroponically were demonstrated and studied using non-compartmental pharmacokinetic analysis. The results revealed drug-dependent and vegetable-dependent pharmacokinetic differences and indicated that ephemeral vegetables could have high capacity accumulating antibiotics (up to 160 μg g-1 for TC and 38 μg g-1 for SMX) within hours. TC concentration in the root (Cmax) could reach 11 times higher than that in the cultivation fluid and 3-28 times higher than the petioles/stems. Based on the volume of distribution (Vss), SMX was 3-6 times more extensively distributed than TC. Both antibiotics showed evident, albeit slow elimination phase with elimination half-lives ranging from 22 to 88 hours. For the first time drug elimination through the roots of a plant was demonstrated, and by viewing the root as a central compartment and continuous infusion without a loading dose as drug administration mode, it is possible to pharmacokinetically monitor the movement of antibiotics and their fate in the vegetables with more detailed information not previously available. Phyto-pharmacokinetic could be a new area worth developing new models for the assessment of veterinary drugs in edible plants

    Effect of 30 μM HOE 694, Na<sup>+</sup>-free and 0.2 mM DIDS on pHi recovery from induced acidosis in HRASMCs superfused with 5% CO2/HCO3<sup>−</sup> Tyrode solution.

    No full text
    <p><b>A and C:</b> The top bar shows the buffer system used in the superfusate. The periods of application of NH<sub>4</sub>Cl and tested drugs (30 μM HOE 694, Na<sup>+</sup>-free solution, 0.2 mM DIDS and HOE 694 pulse DIDS) are shown with bars above or below the trace. The left part of traces A and C shows a typical pH<sub>i</sub> recovery from an intracellular acidosis induced by a 10 min NH<sub>4</sub>Cl (20 mM) pre-pulse in 5% CO<sub>2</sub>/HCO<sub>3</sub><sup>−</sup> Tyrode solution (pH<sub>o</sub>  = 7.4, 37°C) in HRASMCs. For details of mechanism of the pre-pulse technique, please see the <i>Materials and Methods</i> section. The right part of traces A and C represents experiments showing the effect of 30 μM HOE 694 (a NHE exchanger inhibitor), Na<sup>+</sup>-free solution 0.2 mM DIDS (a NBC exchanger inhibitor) and HOE 694 plus DIDS on pH<sub>i</sub> recovery, respectively, in HRASMCs. B and D: Histograms, showing the pH<sub>i</sub> recovery slope of acid extrusion after NH<sub>4</sub>Cl-induced intracellular acidosis averaged for several experiments similar to those shown in A and C respectively. **: p<0.01 vs. control.</p

    Effect of lipopolysaccharides (LPS) on resting pH<sub>i</sub> and NHE activity in HRASMCs superfused with HEPES-buffered Tyrode solution.

    No full text
    <p><b>A, C, E:</b> The top bar shows the buffer system used in the superfusate. The periods of application of NH<sub>4</sub>Cl and LPS (1∼10000 ng/ml) are shown with bars above or below the trace. Traces A represents experiments showing the effect of different concentrations of LPS (1∼10000 ng/ml) on resting pH<sub>i</sub> in HEPES-buffered Tyrode solution in HRASMCs (pH<sub>o</sub>  = 7.4, 37°C). The left part of traces C and E shows a typical pH<sub>i</sub> recovery from an intracellular acidosis induced by a 7 min NH<sub>4</sub>Cl (20 mM) pre-pulse in HEPES-buffered solution (pH<sub>o</sub>  = 7.4, 37°C) in HRASMCs. The right part of traces C and E represents experiment showing the effect of different concentrations of LPS (1∼10000 ng/ml) on pH<sub>i</sub> recovery in HRASMCs. B, D: Histograms, showing the change in resting pH<sub>i</sub> and pH<sub>i</sub> recovery slope of acid extrusion after NH<sub>4</sub>Cl-induced intracellular acidosis averaged for 7 and 6 experiments similar to those shown in A and C (measured at the range between the two dash lines of the figure), respectively. *: p<0.01 vs. control.</p
    corecore