3,220 research outputs found
On Two-Pair Two-Way Relay Channel with an Intermittently Available Relay
When multiple users share the same resource for physical layer cooperation
such as relay terminals in their vicinities, this shared resource may not be
always available for every user, and it is critical for transmitting terminals
to know whether other users have access to that common resource in order to
better utilize it. Failing to learn this critical piece of information may
cause severe issues in the design of such cooperative systems. In this paper,
we address this problem by investigating a two-pair two-way relay channel with
an intermittently available relay. In the model, each pair of users need to
exchange their messages within their own pair via the shared relay. The shared
relay, however, is only intermittently available for the users to access. The
accessing activities of different pairs of users are governed by independent
Bernoulli random processes. Our main contribution is the characterization of
the capacity region to within a bounded gap in a symmetric setting, for both
delayed and instantaneous state information at transmitters. An interesting
observation is that the bottleneck for information flow is the quality of state
information (delayed or instantaneous) available at the relay, not those at the
end users. To the best of our knowledge, our work is the first result regarding
how the shared intermittent relay should cooperate with multiple pairs of users
in such a two-way cooperative network.Comment: extended version of ISIT 2015 pape
Novel bioactivities of phosvitin in bone formation, collagen synthesis and bio-mineralization
Thesis (MSD) --Boston University, Henry M. Goldman School of Dental Medicine, 2015 (Department of Periodontology).Includes bibliography: leaves 104-115.Egg yolk phosvitin is one of the most highly phosphorylated extracellular matrix proteins known in nature with unique physico-chemical properties deem ed to be critical during ex-vivo egg embryo development. We have utilized our unique live m ouse calvarial bone organ culture models under conditions which dissociates the two bone remodeling stages, viz., resorption by osteoclasts and formation by osteoblasts, to highlight important and to date unknown critical biological functions of egg phosvitin. In our resorption model live bone cultures were grown in the absence of ascorbate and were stimulated by parathyroid hormone (PTH) to undergo rapid osteoclast formation/differentiation with bone resorption. In this resorption model native phosvitin potently inhibited PTH-induced osteoclastic bone resorption with simultaneous new osteoid/bone formation in the absence of ascorbate (vitamin C). These surprising and critical observations were extended using the bone formation model in the absence o f ascorbate and in the presence of phosvitin which supported the above results. The results were corroborated by analyses for calcium release or uptake, tartrate-resistant acid phosphatase activity ... [TRUNCATED
Fingerprinting with Minimum Distance Decoding
This work adopts an information theoretic framework for the design of
collusion-resistant coding/decoding schemes for digital fingerprinting. More
specifically, the minimum distance decision rule is used to identify 1 out of t
pirates. Achievable rates, under this detection rule, are characterized in two
distinct scenarios. First, we consider the averaging attack where a random
coding argument is used to show that the rate 1/2 is achievable with t=2
pirates. Our study is then extended to the general case of arbitrary
highlighting the underlying complexity-performance tradeoff. Overall, these
results establish the significant performance gains offered by minimum distance
decoding as compared to other approaches based on orthogonal codes and
correlation detectors. In the second scenario, we characterize the achievable
rates, with minimum distance decoding, under any collusion attack that
satisfies the marking assumption. For t=2 pirates, we show that the rate
is achievable using an ensemble of random linear
codes. For , the existence of a non-resolvable collusion attack, with
minimum distance decoding, for any non-zero rate is established. Inspired by
our theoretical analysis, we then construct coding/decoding schemes for
fingerprinting based on the celebrated Belief-Propagation framework. Using an
explicit repeat-accumulate code, we obtain a vanishingly small probability of
misidentification at rate 1/3 under averaging attack with t=2. For collusion
attacks which satisfy the marking assumption, we use a more sophisticated
accumulate repeat accumulate code to obtain a vanishingly small
misidentification probability at rate 1/9 with t=2. These results represent a
marked improvement over the best available designs in the literature.Comment: 26 pages, 6 figures, submitted to IEEE Transactions on Information
Forensics and Securit
Filter and nested-lattice code design for fading MIMO channels with side-information
Linear-assignment Gel'fand-Pinsker coding (LA-GPC) is a coding technique for
channels with interference known only at the transmitter, where the known
interference is treated as side-information (SI). As a special case of LA-GPC,
dirty paper coding has been shown to be able to achieve the optimal
interference-free rate for interference channels with perfect channel state
information at the transmitter (CSIT). In the cases where only the channel
distribution information at the transmitter (CDIT) is available, LA-GPC also
has good (sometimes optimal) performance in a variety of fast and slow fading
SI channels. In this paper, we design the filters in nested-lattice based
coding to make it achieve the same rate performance as LA-GPC in multiple-input
multiple-output (MIMO) channels. Compared with the random Gaussian codebooks
used in previous works, our resultant coding schemes have an algebraic
structure and can be implemented in practical systems. A simulation in a
slow-fading channel is also provided, and near interference-free error
performance is obtained. The proposed coding schemes can serve as the
fundamental building blocks to achieve the promised rate performance of MIMO
Gaussian broadcast channels with CDIT or perfect CSITComment: submitted to IEEE Transactions on Communications, Feb, 200
Clean relaying aided cognitive radio under the coexistence constraint
We consider the interference-mitigation based cognitive radio where the
primary and secondary users can coexist at the same time and frequency bands,
under the constraint that the rate of the primary user (PU) must remain the
same with a single-user decoder. To meet such a coexistence constraint, the
relaying from the secondary user (SU) can help the PU's transmission under the
interference from the SU. However, the relayed signal in the known dirty paper
coding (DPC) based scheme is interfered by the SU's signal, and is not "clean".
In this paper, under the half-duplex constraints, we propose two new
transmission schemes aided by the clean relaying from the SU's transmitter and
receiver without interference from the SU. We name them as the clean
transmitter relaying (CT) and clean transmitter-receiver relaying (CTR) aided
cognitive radio, respectively. The rate and multiplexing gain performances of
CT and CTR in fading channels with various availabilities of the channel state
information at the transmitters (CSIT) are studied. Our CT generalizes the
celebrated DPC based scheme proposed previously. With full CSIT, the
multiplexing gain of the CTR is proved to be better (or no less) than that of
the previous DPC based schemes. This is because the silent period for decoding
the PU's messages for the DPC may not be necessary in the CTR. With only the
statistics of CSIT, we further prove that the CTR outperforms the rate
performance of the previous scheme in fast Rayleigh fading channels. The
numerical examples also show that in a large class of channels, the proposed CT
and CTR provide significant rate gains over the previous scheme with small
complexity penalties.Comment: 30 page
- …