8,915 research outputs found

    Complete gradient-LC-ESI system on a chip for protein analysis

    Get PDF
    This paper presents the first fully integrated gradient-elution liquid chromatography-electrospray ionization (LC-ESI) system on a chip. This chip integrates a pair of high-pressure gradient pumps, a sample injection pump, a passive mixer, a packed separation column, and an ESI nozzle. We also present the successful on-chip separation of protein digests by reverse phase (RP)-LC coupled with on-line mass spectrometer (MS) analysis

    Reynolds stress models of homogeneous turbulence

    Get PDF
    Existing and new models for the rapid and the return terms in the Reynolds stress equations were tested in two ways. One, by direct comparison of the model with simulation data. The other, by simulating the flows using the models and comparing the predicted Reynolds stresses with the data. It was found that existing linear models can be improved and that nonlinear models are in better agreement with the simulation data for a wide variety of flows

    Simulation of valveless micropump and mode analysis

    Get PDF
    In this work, a 3-D simulation is performed to study for the solid-fluid coupling effect driven by piezoelectric materials and utilizes asymmetric obstacles to control the flow direction. The result of simulation is also verified. For a micropump, it is crucial to find the optimal working frequency which produce maximum net flow rate. The PZT plate vibrates under the first mode, which is symmetric. Adjusting the working frequency, the maximum flow rate can be obtained. For the micrpump we studied, the optimal working frequency is 3.2K Hz. At higher working frequency, say 20K Hz, the fluid-solid membrane may come out a intermediate mode, which is different from the first mode and the second mode. It is observed that the center of the mode drifts. Meanwhile, the result shows that a phase shift lagging when the excitation force exists in the vibration response. Finally, at even higher working frequency, say 30K Hz, a second vibration mode is observed.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Quantum interference by two temporally distinguishable pulses

    Full text link
    We report a two-photon interference effect, in which the entangled photon pairs are generated from two laser pulses well-separated in time. In a single pump pulse case, interference effects did not occur in our experimental scheme. However, by introducing a second pump pulse delayed in time, quantum interference was then observed. The visibility of the interference fringes shows dependence on the delay time between two laser pulses. The results are explained in terms of indistinguishability of biphoton amplitudes which originated from two temporally separated laser pulses.Comment: two-column, 4pages, submitted to PRA, minor change

    New high-efficiency source of photon pairs for engineering quantum entanglement

    Full text link
    We have constructed an efficient source of photon pairs using a waveguide-type nonlinear device and performed a two-photon interference experiment with an unbalanced Michelson interferometer. Parametric down-converted photons from the nonlinear device are detected by two detectors located at the output ports of the interferometer. Because the interferometer is constructed with two optical paths of different length, photons from the shorter path arrive at the detector earlier than those from the longer path. We find that the difference of arrival time and the time window of the coincidence counter are important parameters which determine the boundary between the classical and quantum regime. When the time window of the coincidence counter is smaller than the arrival time difference, fringes of high visibility (80±\pm 10%) were observed. This result is only explained by quantum theory and is clear evidence for quantum entanglement of the interferometer's optical paths.Comment: 4 pages, 4 figures, IQEC200

    Learning Temporal Transformations From Time-Lapse Videos

    Full text link
    Based on life-long observations of physical, chemical, and biologic phenomena in the natural world, humans can often easily picture in their minds what an object will look like in the future. But, what about computers? In this paper, we learn computational models of object transformations from time-lapse videos. In particular, we explore the use of generative models to create depictions of objects at future times. These models explore several different prediction tasks: generating a future state given a single depiction of an object, generating a future state given two depictions of an object at different times, and generating future states recursively in a recurrent framework. We provide both qualitative and quantitative evaluations of the generated results, and also conduct a human evaluation to compare variations of our models.Comment: ECCV201

    Time-bin entangled photon holes

    Full text link
    The general concept of entangled photon holes is based on a correlated absence of photon pairs in an otherwise constant optical background. Here we consider the specialized case when this background is confined to two well-defined time bins, which allows the formation of time-bin entangled photon holes. We show that when the typical coherent state background is replaced by a true single-photon (Fock state) background, the basic time-bin entangled photon-hole state becomes equivalent to one of the time-bin entangled photon-pair states. We experimentally demonstrate these ideas using a parametric down-conversion photon-pair source, linear optics, and post-selection to violate a Bell inequality with time-bin entangled photon holes.Comment: 6 pages, 5 figure

    Kinetic Inductance of Josephson Junction Arrays: Dynamic and Equilibrium Calculations

    Full text link
    We show analytically that the inverse kinetic inductance L1L^{-1} of an overdamped junction array at low frequencies is proportional to the admittance of an inhomogeneous equivalent impedance network. The ijthij^{th} bond in this equivalent network has an inverse inductance Jijcos(θi0θj0Aij)J_{ij}\cos(\theta_i^0-\theta_j^0-A_{ij}), where JijJ_{ij} is the Josephson coupling energy of the ijthij^{th} bond, θi0\theta_i^0 is the ground-state phase of the grain ii, and AijA_{ij} is the usual magnetic phase factor. We use this theorem to calculate L1L^{-1} for square arrays as large as 180×180180\times 180. The calculated L1L^{-1} is in very good agreement with the low-temperature limit of the helicity modulus γ\gamma calculated by conventional equilibrium Monte Carlo techniques. However, the finite temperature structure of γ\gamma, as a function of magnetic field, is \underline{sharper} than the zero-temperature L1L^{-1}, which shows surprisingly weak structure. In triangular arrays, the equilibrium calculation of γ\gamma yields a series of peaks at frustrations f=12(11/N)f = \frac{1}{2}(1-1/N), where NN is an integer 2\geq 2, consistent with experiment.Comment: 14 pages + 6 postscript figures, 3.0 REVTe
    corecore