44 research outputs found

    MPP6 stimulates both RRP6 and DIS3 to degrade a specified subset of MTR4-sensitive substrates in the human nucleus

    Get PDF
    ヒト細胞内でRNA分解時に働く因子の役割を解明 --細胞内におけるRNA分解機構の全容解明に期待--. 京都大学プレスリリース. 2022-08-05.Recent in vitro reconstitution analyses have proven that the physical interaction between the exosome core and MTR4 helicase, which promotes the exosome activity, is maintained by either MPP6 or RRP6. However, knowledge regarding the function of MPP6 with respect to in vivo exosome activity remains scarce. Here, we demonstrate a facilitative function of MPP6 that composes a specific part of MTR4-dependent substrate decay by the human exosome. Using RNA polymerase II-transcribed poly(A)⁺ substrate accumulation as an indicator of a perturbed exosome, we found functional redundancy between RRP6 and MPP6 in the decay of these poly(A)⁺ transcripts. MTR4 binding to the exosome core via MPP6 was essential for MPP6 to exert its redundancy with RRP6. However, at least for the decay of our identified exosome substrates, MTR4 recruitment by MPP6 was not functionally equivalent to recruitment by RRP6. Genome-wide classification of substrates based on their sensitivity to each exosome component revealed that MPP6 deals with a specific range of substrates and highlights the importance of MTR4 for their decay. Considering recent findings of competitive binding to the exosome between auxiliary complexes, our results suggest that the MPP6-incorporated MTR4-exosome complex is one of the multiple alternative complexes rather than the prevailing one

    Species identification, antifungal susceptibility, and clinical feature association of Aspergillus section Nigri isolates from the lower respiratory tract

    Get PDF
    Species of Aspergillus section Nigri are generally identified by molecular genetics approaches, whereas in clinical practice, they are classified as A. niger by their morphological characteristics. This study aimed to investigate whether the species of Aspergillus section Nigri isolated from the respiratory tract vary depending on clinical diagnosis. Forty-four Aspergillus section Nigri isolates isolated from the lower respiratory tracts of 43 patients were collected from February 2012 to January 2017 at the National Hospital Organization (NHO) Tokyo National Hospital. Species identification was carried out based on β-tubulin gene analysis. Drug susceptibility tests were performed according to the Clinical and Laboratory Standards Institute (CLSI) M38 3rd edition, and the clinical characteristics were retrospectively reviewed. A. welwitschiae was isolated most frequently, followed by A. tubingensis. More than half of the A. tubingensis isolates exhibited low susceptibility to azoles in contrast to only one A. welwitschiae isolate. Approximately three quarters of the patients from whom A. welwitschiae was isolated were diagnosed with colonization, whereas more than half the patients from whom A. tubingensis was isolated were diagnosed with chronic pulmonary aspergillosis (CPA). More attention needs to be given to the drug choice for patients with CPA with Aspergillus section Nigri infection because A. tubingensis, which was found to be frequently azole-resistant, was the most prevalent in these patients

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016)

    Get PDF
    Background and purposeThe Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in February 2017 and published in the Journal of JSICM, [2017; Volume 24 (supplement 2)] https://doi.org/10.3918/jsicm.24S0001 and Journal of Japanese Association for Acute Medicine [2017; Volume 28, (supplement 1)] http://onlinelibrary.wiley.com/doi/10.1002/jja2.2017.28.issue-S1/issuetoc.This abridged English edition of the J-SSCG 2016 was produced with permission from the Japanese Association of Acute Medicine and the Japanese Society for Intensive Care Medicine.MethodsMembers of the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine were selected and organized into 19 committee members and 52 working group members. The guidelines were prepared in accordance with the Medical Information Network Distribution Service (Minds) creation procedures. The Academic Guidelines Promotion Team was organized to oversee and provide academic support to the respective activities allocated to each Guideline Creation Team. To improve quality assurance and workflow transparency, a mutual peer review system was established, and discussions within each team were open to the public. Public comments were collected once after the initial formulation of a clinical question (CQ) and twice during the review of the final draft. Recommendations were determined to have been adopted after obtaining support from a two-thirds (> 66.6%) majority vote of each of the 19 committee members.ResultsA total of 87 CQs were selected among 19 clinical areas, including pediatric topics and several other important areas not covered in the first edition of the Japanese guidelines (J-SSCG 2012). The approval rate obtained through committee voting, in addition to ratings of the strengths of the recommendation, and its supporting evidence were also added to each recommendation statement. We conducted meta-analyses for 29 CQs. Thirty-seven CQs contained recommendations in the form of an expert consensus due to insufficient evidence. No recommendations were provided for five CQs.ConclusionsBased on the evidence gathered, we were able to formulate Japanese-specific clinical practice guidelines that are tailored to the Japanese context in a highly transparent manner. These guidelines can easily be used not only by specialists, but also by non-specialists, general clinicians, nurses, pharmacists, clinical engineers, and other healthcare professionals

    Food-Derived Compounds Apigenin and Luteolin Modulate mRNA Splicing of Introns with Weak Splice Sites

    Get PDF
    食品成分がmRNAのスプライシングを調節することを解明 --フラボノイドによるがん予防の可能性--. 京都大学プレスリリース. 2019-12-04.Cancer cells often exhibit extreme sensitivity to splicing inhibitors. We identified food-derived flavonoids, apigenin and luteolin, as compounds that modulate mRNA splicing at the genome-wide level, followed by proliferation inhibition. They bind to mRNA splicing-related proteins to induce a widespread change of splicing patterns in treated cells. Their inhibitory activity on splicing is relatively moderate, and introns with weak splice sites tend to be sensitive to them. Such introns remain unspliced, and the resulting intron-containing mRNAs are retained in the nucleus, resulting in the nuclear accumulation of poly(A)+ RNAs in these flavonoid-treated cells. Tumorigenic cells are more susceptible to these flavonoids than nontumorigenic cells, both for the nuclear poly(A)+ RNA-accumulating phenotype and cell viability. This study illustrates the possible mechanism of these flavonoids to suppress tumor progression in vivo that were demonstrated by previous studies and provides the potential of daily intake of moderate splicing inhibitors to prevent cancer development
    corecore