272 research outputs found

    Numerical Analysis of the Correlation between Arc Plasma Fluctuation and Nanoparticle Growth–Transport under Atmospheric Pressure

    Get PDF
    A time-dependent two-dimensional (2D) axisymmetric simulation was conducted for arc plasma with dynamically fluctuating fluid generating iron nanoparticles in a direct-current discharge condition. The nonequilibrium process of simultaneous growth and transport of nanoparticles is simulated using a simple model with a low computational cost. To ascertain fluid dynamic instability and steep gradients in plasma temperature and particle distributions, a highly accurate method is adopted for computation. The core region of the arc plasma is almost stationary, whereas the fringe fluctuates because of fluid dynamic instability between the arc plasma and the shielding gas. In the downstream region, the vapor molecules decrease by condensation. The nanoparticles decrease by coagulation. These results suggest that both of the simultaneous processes make important contributions to particle growth. The fluctuation of nanoparticle number density in a distant region exhibits stronger correlation with the temperature fluctuation at the plasma fringe. The correlation analysis results suggest that the distribution of growing nanoparticles distant from the arc plasma can be controlled via control of temperature fluctuation at the arc plasma fringe

    Realization of Berezinskii's superconductivity in quasi-one-dimensional systems

    Full text link
    We revisit the pairing symmetry competition in quasi-one-dimensional systems. We show that spin-triplet s-wave pairing, where the pair is formed by electrons with different times and has an odd-frequency symmetry, can be realized in systems with strong one-dimensionality when the strength of charge fluctuation dominates over spin fluctuation. The present study provides a novel microscopic mechanism for this exotic pairing originally proposed by Berezinskii in 1974.Comment: 4 pages, 4 figure

    Partially-disordered photonic-crystal thin films for enhanced and robust photovoltaics

    Get PDF
    We present a general framework for the design of thin-film photovoltaics based on a partially-disordered photonic crystal that has both enhanced absorption for light trapping and reduced sensitivity to the angle and polarization of incident radiation. The absorption characteristics of different lattice structures are investigated as an initial periodic structure is gradually perturbed. We find that an optimal amount of disorder controllably introduced into a multi-lattice photonic crystal causes the characteristic narrow-band, resonant peaks to be broadened resulting in a device with enhanced and robust performance ideal for typical operating conditions of photovoltaic applications.Comment: 5 pages, 4 figure
    corecore