145 research outputs found

    Microfluidic cell engineering on high-density microelectrode arrays for assessing structure-function relationships in living neuronal networks

    Full text link
    Neuronal networks in dissociated culture combined with cell engineering technology offer a pivotal platform to constructively explore the relationship between structure and function in living neuronal networks. Here, we fabricated defined neuronal networks possessing a modular architecture on high-density microelectrode arrays (HD-MEAs), a state-of-the-art electrophysiological tool for recording neural activity with high spatial and temporal resolutions. We first established a surface coating protocol using a cell-permissive hydrogel to stably attach polydimethylsiloxane microfluidic film on the HD-MEA. We then recorded the spontaneous neural activity of the engineered neuronal network, which revealed an important portrait of the engineered neuronal network--modular architecture enhances functional complexity by reducing the excessive neural correlation between spatially segregated modules. The results of this study highlight the impact of HD-MEA recordings combined with cell engineering technologies as a novel tool in neuroscience to constructively assess the structure-function relationships in neuronal networks.Comment: 18 pages, 5 figure

    Biological neurons act as generalization filters in reservoir computing

    Full text link
    Reservoir computing is a machine learning paradigm that transforms the transient dynamics of high-dimensional nonlinear systems for processing time-series data. Although reservoir computing was initially proposed to model information processing in the mammalian cortex, it remains unclear how the non-random network architecture, such as the modular architecture, in the cortex integrates with the biophysics of living neurons to characterize the function of biological neuronal networks (BNNs). Here, we used optogenetics and fluorescent calcium imaging to record the multicellular responses of cultured BNNs and employed the reservoir computing framework to decode their computational capabilities. Micropatterned substrates were used to embed the modular architecture in the BNNs. We first show that modular BNNs can be used to classify static input patterns with a linear decoder and that the modularity of the BNNs positively correlates with the classification accuracy. We then used a timer task to verify that BNNs possess a short-term memory of ~1 s and finally show that this property can be exploited for spoken digit classification. Interestingly, BNN-based reservoirs allow transfer learning, wherein a network trained on one dataset can be used to classify separate datasets of the same category. Such classification was not possible when the input patterns were directly decoded by a linear decoder, suggesting that BNNs act as a generalization filter to improve reservoir computing performance. Our findings pave the way toward a mechanistic understanding of information processing within BNNs and, simultaneously, build future expectations toward the realization of physical reservoir computing systems based on BNNs.Comment: 31 pages, 5 figures, 3 supplementary figure

    Proteomic Profiling of Thyroid Papillary Carcinoma

    Get PDF
    Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy. We performed shotgun liquid chromatography (LC)/tandem mass spectrometry (MS/MS) analysis on pooled protein extracts from patients with PTC and compared the results with those from normal thyroid tissue validated by real-time (RT) PCR and immunohistochemistry (IHC). We detected 524 types of protein in PTC and 432 in normal thyroid gland. Among these proteins, 145 were specific to PTC and 53 were specific to normal thyroid gland. We have also identified two important new markers, nephronectin (NPNT) and malectin (MLEC). Reproducibility was confirmed with several known markers, but the one of two new candidate markers such as MLEC did not show large variations in expression levels. Furthermore, IHC confirmed the overexpression of both those markers in PTCs compared with normal surrounding tissues. Our protein data suggest that NPNT and MLEC could be a characteristic marker for PTC
    corecore