38 research outputs found

    Improved Adsorption of an Enterococcus faecalis Bacteriophage ΦEF24C with a Spontaneous Point Mutation

    Get PDF
    Some bacterial strains of the multidrug-resistant Gram-positive bacteria Enterococcus faecalis can significantly reduce the efficacy of conventional antimicrobial chemotherapy. Thus, the introduction of bacteriophage (phage) therapy is expected, where a phage is used as a bioagent to destroy bacteria. E. faecalis phage ΦEF24C is known to be a good candidate for a therapeutic phage against E. faecalis. However, this therapeutic phage still produces nonuniform antimicrobial effects with different bacterial strains of the same species and this might prove detrimental to its therapeutic effects. One solution to this problem is the preparation of mutant phages with higher activity, based on a scientific rationale. This study isolated and analyzed a spontaneous mutant phage, ΦEF24C-P2, which exhibited higher infectivity against various bacterial strains when compared with phage ΦEF24C. First, the improved bactericidal effects of phage ΦEF24C-P2 were attributable to its increased adsorption rate. Moreover, genomic sequence scanning revealed that phage ΦEF24C-P2 had a point mutation in orf31. Proteomic analysis showed that ORF31 (mw, 203 kDa) was present in structural components, and immunological analysis using rabbit-derived antibodies showed that it was a component of a long, flexible fine tail fiber extending from the tail end. Finally, phage ΦEF24C-P2 also showed higher bactericidal activity in human blood compared with phage ΦEF24C using the in vitro assay system. In conclusion, the therapeutic effects of phage ΦEF24C-P2 were improved by a point mutation in gene orf31, which encoded a tail fiber component

    Essential anatomy for lateral lymph node dissection

    Get PDF
    In Western countries, the gold-standard therapeutic strategy for rectal cancer is preoperative chemoradiotherapy (CRT) following total mesorectal excision (TME), without lateral lymph node dissection (LLND). However, preoperative CRT has recently been reported to be insufficient to control lateral lymph node recurrence in cases of enlarged lateral lymph nodes before CRT, and LLND is considered necessary in such cases. We performed a literature review on aspects of pelvic anatomy associated with rectal surgery and LLND, and then combined this information with our experience and knowledge of pelvic anatomy. In this review, drawing upon research using a 3-dimensional anatomical model and actual operative views, we aimed to clarify the essential anatomy for LLND. The LLND procedure was developed in Asian countries and can now be safely performed in terms of functional preservation. Nonetheless, the longer operative time, hemorrhage, and higher complication rates with TME accompanied by LLND than with TME alone indicate that LLND is still a challenging procedure. Laparoscopic or robotic LLND has been shown to be useful and is widely performed; however, without a sufficient understanding of anatomical landmarks, misrecognition of vessels and nerves often occurs. To perform safe and accurate LLND, understanding the landmarks of LLND is essential

    精神疾患におけるマイクログリア由来ニューレグリン発現

    Get PDF
    Several studies have revealed that neuregulins (NRGs) are involved in brain function and psychiatric disorders. While NRGs have been regarded as neuron- or astrocyte-derived molecules, our research has revealed that microglia also express NRGs, levels of which are markedly increased in activated microglia. Previous studies have indicated that microglia are activated in the brains of individuals with autism spectrum disorder (ASD). Therefore, we investigated microglial NRG mRNA expression in multiple lines of mice considered models of ASD. Intriguingly, microglial NRG expression significantly increased in BTBR and socially-isolated mice, while maternal immune activation (MIA) mice exhibited identical NRG expression to controls. Furthermore, we observed a positive correlation between NRG expression in microglia and peripheral blood mononuclear cells (PBMCs) in mice, suggesting that NRG expression in human PBMCs may mirror microglia-derived NRG expression in the human brain. To translate these findings for application in clinical psychiatry, we measured levels of NRG1 splice-variant expression in clinically available PBMCs of patients with ASD. Levels of NRG1 type III expression in PBMCs were positively correlated with impairments in social interaction in children with ASD (as assessed using the Autistic Diagnostic Interview-Revised test: ADI-R). These findings suggest that immune cell-derived NRGs may be implicated in the pathobiology of psychiatric disorders such as ASD.博士(医学)・乙第1404号・平成29年6月28日Copyright © 2017 Elsevier Inc. All rights reserved

    Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases

    No full text
    Phage DNA packaging is believed to be driven by a rotary device coupled to an ATPase ‘motor’. Recent evidence suggests that the phage DNA packaging motor is one of the strongest force-generating molecular motors reported to date. However, the ATPase center that is responsible for generating this force is unknown. In order to identify the DNA translocating ATPase, the sequences of the packaging/terminase genes of coliphages T4 and RB49 and vibriophages KVP40 and KVP20 have been analyzed. Alignment of the terminase polypeptide sequences revealed a number of functional signatures in the terminase genes 16 and 17. Most importantly, the data provide compelling evidence for an ATPase catalytic center in the N-terminal half of the large terminase subunit gp17. An analogous ATPase domain consisting of conserved functional signatures is also identified in the large terminase subunit of other bacteriophages and herpesviruses. Interestingly, the putative terminase ATPase domain exhibits some of the common features found in the ATPase domain of DEAD box helicases. Residues that would be critical for ATPase catalysis and its coupling to DNA packaging are identified. Com binatorial mutagenesis shows that the predicted threonine residues in the putative ATPase coupling motif are indeed critical for function

    Melibiose carrier of Escherichia coli: use of cysteine mutagenesis to identify the amino acids on the hydrophilic face of transmembrane helix 2

    Get PDF
    AbstractThe melibiose carrier from Escherichia coli is a galactoside-cation symporter. Based on both experimental evidence and hydropathy analysis, 12 transmembrane helices have been assigned to this integral membrane protein. Transmembrane helix 2 contains several charged and polar amino acids that have been shown to be essential for the cation-coupled transport of melibiose. Starting with the cysteine-less melibiose carrier, we have individually substituted cysteine for amino acids 39–66, which includes the proposed transmembrane helix 2. In the resulting derivative carriers, we measured the transport of melibiose, determined the effect of the hydrophilic sulfhydryl reagent, p-chloromercuribenzenesulfonic acid (PCMBS), on transport in intact cells and inside out vesicles, and examined the ability of melibiose to protect the carrier from inactivation by the sulfhydryl reagent. We found a set of seven positions in which the reaction with the sulfhydryl reagent caused partial or complete loss of carrier function measured in intact cells or inside-out vesicles. The presence of melibiose protected five of these positions from reaction with PCMBS. The reaction of two additional positions with PCMBS resulted in the partial loss of transport function only in inside-out vesicles. Melibiose protected these two positions from reaction with the reagent. Together, the PCMBS-sensitive sites and charged residues assigned to helix 2 form a cluster of amino acids that map in three rows with each row comprised of every fourth residue. This is the pattern expected of residues that are part of an α-helical structure and thus the rows are tilted at an angle of 25° to the helical axis. We suggest that these residues line the path of melibiose and its associated cation through the carrier

    In Silico and In Vivo Evaluation of Bacteriophage φEF24C, a Candidate for Treatment of Enterococcus faecalis Infections▿ †

    No full text
    Along with the increasing threat of nosocomial infections by vancomycin-resistant Enterococcus faecalis, bacteriophage (phage) therapy has been expected as an alternative therapy against infectious disease. Although genome information and proof of applicability are prerequisites for a modern therapeutic phage, E. faecalis phage has not been analyzed in terms of these aspects. Previously, we reported a novel virulent phage, φEF24C, and its biology indicated its therapeutic potential against E. faecalis infection. In this study, the φEF24C genome was analyzed and the in vivo therapeutic applicability of φEF24C was also briefly assessed. Its complete genome (142,072 bp) was predicted to have 221 open reading frames (ORFs) and five tRNA genes. In our functional analysis of the ORFs by use of a public database, no proteins undesirable in phage therapy, such as pathogenic and integration-related proteins, were predicted. The noncompetitive directions of replication and transcription and the host-adapted translation of the phage were deduced bioinformatically. Its genomic features indicated that φEF24C is a member of the SPO1-like phage genus and especially that it has a close relationship to the Listeria phage P100, which is authorized for prophylactic use. Thus, these bioinformatics analyses rationalized the therapeutic eligibility of φEF24C. Moreover, the in vivo therapeutic potential of φEF24C, which was effective at a low concentration and was not affected by host sensitivity to the phage, was proven by use of sepsis BALB/c mouse models. Furthermore, no change in mouse lethality was observed under either single or repeated phage exposures. Although further study is required, φEF24C can be a promising therapeutic phage against E. faecalis infections

    Therapeutic Potential of an Endolysin Derived from Kayvirus S25-3 for Staphylococcal Impetigo

    No full text
    Impetigo is a contagious skin infection predominantly caused by Staphylococcus aureus. Decontamination of S. aureus from the skin is becoming more difficult because of the emergence of antibiotic-resistant strains. Bacteriophage endolysins are less likely to invoke resistance and can eliminate the target bacteria without disturbance of the normal microflora. In this study, we investigated the therapeutic potential of a recombinant endolysin derived from kayvirus S25-3 against staphylococcal impetigo in an experimental setting. First, the recombinant S25-3 endolysin required an incubation period of over 15 minutes to exhibit efficient bactericidal effects against S. aureus. Second, topical application of the recombinant S25-3 endolysin decreased the number of intraepidermal staphylococci and the size of pustules in an experimental mouse model of impetigo. Third, treatment with the recombinant S25-3 endolysin increased the diversity of the skin microbiota in the same mice. Finally, we revealed the genus-specific bacteriolytic effect of recombinant S25-3 endolysin against staphylococci, particularly S. aureus, among human skin commensal bacteria. Therefore, topical treatment with recombinant S25-3 endolysin can be a promising disease management procedure for staphylococcal impetigo by efficient bacteriolysis of S. aureus while improving the cutaneous bacterial microflora
    corecore