115 research outputs found

    No requirement of reactive oxygen intermediates in Fas-mediated apoptosis

    Get PDF
    AbstractFas is a cell surface molecule that mediates apoptosis, but the intracellular mechanisms leading to apoptosis are not well understood. It is known that diethylmaleate (DEM)-induced cell death can be blocked by substances with antioxidant activity. Here we have studied whether antioxidants have any effect on Fas-mediated apoptosis and show that they are not able to block Fas-mediated apoptosis. Therefore, it seems that reactive oxygen intermediate (ROI)-dependent and -independent mechanisms which lead to apoptosis do exist. Fas-mediated apoptosis probably proceeds via a ROI-independent pathway

    The Many Roles of FAS Receptor Signaling in the Immune System

    Get PDF
    SummaryFAS belongs to the subgroup of the tumor necrosis factor receptor (TNF-R) family that contains an intracellular “death domain” and triggers apoptosis. Its physiological ligand FASL is a member of the TNF cytokine family. Studies with mutant mice and cells from human patients have shown that FAS plays critical roles in the immune system, including the killing of pathogen-infected cells and the death of obsolete and potentially dangerous lymphocytes. Fas thereby functions as a guardian against autoimmunity and tumor development. FAS triggers apoptosis through FADD-mediated recruitment and activation of caspase-8. In certain cells such as hepatocytes, albeit not lymphocytes, FAS-induced apoptosis requires amplification through proteolytic activation of the proapoptotic BCL-2 family member BID. Curiously, several components of the FAS signaling machinery have been implicated in nonapoptotic processes, including cellular activation, differentiation, and proliferation. This review describes current understanding of Fas-induced apoptosis signaling and proposes experimental strategies for future advances

    Toll-like receptor–independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation

    Get PDF
    Deoxyribonuclease (DNase) II in macrophages cleaves the DNA of engulfed apoptotic cells and of nuclei expelled from erythroid precursor cells. DNase II–deficient mouse embryos accumulate undigested DNA in macrophages, and die in feto because of the activation of the interferon β (IFNβ) gene. Here, we found that the F4/80-positive macrophages in DNase II−/− fetal liver specifically produce a set of cytokines such as IFNβ, TNFα, and CXCL10. Whereas, IFN-inducible genes (2′5′-oligo(A) synthetase, IRF7, and ISG15) were expressed not only in macrophages but also in other F4/80-negative cells. When DNase II−/− macrophages or embryonal fibroblasts engulfed apoptotic cells, they expressed the IFNβ and CXCL10 genes. The ablation of Toll-like receptor (TLR) 3 and 9, or their adaptor molecules (MyD88 and TRIF), had no effect on the lethality of the DNase II−/− mice. These results indicate that there is a TLR-independent sensing mechanism to activate the innate immunity for the endogenous DNA escaping lysosomal degradation

    Xk-Related Protein 8 and CED-8 Promote Phosphatidylserine Exposure in Apoptotic Cells

    Get PDF
    アポトーシス時のリン脂質暴露に関与する因子の同定. 京都大学プレスリリース. 2013-07-12.A classic feature of apoptotic cells is the cell-surface exposure of phosphatidylserine (PtdSer) as an "eat me" signal for engulfment. We show that the Xk-family protein Xkr8 mediates PtdSer exposure in response to apoptotic stimuli. Mouse Xkr8(-/-) cells or human cancer cells in which Xkr8 expression was repressed by hypermethylation failed to expose PtdSer during apoptosis and were inefficiently engulfed by phagocytes. Xkr8 was activated directly by caspases and required a caspase-3 cleavage site for its function. CED-8, the only Caenorhabditis elegans Xk-family homolog, also promoted apoptotic PtdSer exposure and cell-corpse engulfment. Thus, Xk-family proteins have evolutionarily conserved roles in promoting the phagocytosis of dying cells by altering the phospholipid distribution in the plasma membrane
    corecore