169 research outputs found

    Relative effectiveness of several simulated jet engine noise spectral treatments in reducing annoyance in a TV-viewing situation

    Get PDF
    An experiment was conducted in order to determine the relative effectiveness of several hypothetical jet engine noise treatments and to test hypothesis that speech interference, at least in part, mediates annoyance in a TV-viewing situation. Twenty-four subjects watched television in a simulated living room. Recorded jet flyover noises were presented in such a way as to create the illusion that aircraft were actually flying overhead. There were 27 stimuli (nine spectra at three overall levels) presented at an average rate of approximately one flight every 2 minutes. Subjects judged the annoyance value of individual stimuli using either a category rating method or magnitude estimation method in each of two 1-hour sessions. The spectral treatments most effective in reducing annoyance were at 1.6 Khz and 800 Hz, in that order. The degree of annoyance reduction resulting from all treatments was affected by the overall sound level of the stimuli, with the greatest reduction at the intermediate overall sound level, about 88 to 89 db(A), peak value. The results are interpreted as supporting the hypothesis that speech interference, at least in part, mediates annoyance with aircraft noise in a TV-viewing situation

    Specific antigen of tumor cell transformed by DNA extracted from SV-40 virus

    Get PDF
    In the immunofluorescent study it has been revealed that rabbit sera immunized with transformed cells induced by SV-40 DNA, produce circulating antibody capable of re:lcting with intranuclear antigens synthesized by SV-40 complyte virus transforming process, In addition, the result confirmed that SV-40 DNA replicates DNA-containing viruses in the host cell and that also the genome coding for the synthesis of SV-40 tumor antigen is resposible for viral DNA.</p

    Angular Momentum Exchange by Gravitational Torques and Infall in the Circumbinary Disk of the Protostellar System L1551 NE

    Get PDF
    We report the ALMA observation of the Class I binary protostellar system L1551 NE in the 0.9-mm continuum, C18O (3-2), and 13CO (3-2) lines at a ~1.6 times higher resolution and a ~6 times higher sensitivity than those of our previous SMA observations, which revealed a r ~300 AU-scale circumbinary disk in Keplerian rotation. The 0.9-mm continuum shows two opposing U-shaped brightenings in the circumbinary disk, and exhibits a depression between the circumbinary disk and the circumstellar disk of the primary protostar. The molecular lines trace non-axisymmetric deviations from Keplerian rotation in the circumbinary disk at higher velocities relative to the systemic velocity, where our previous SMA observations could not detect the lines. In addition, we detect inward motion along the minor axis of the circumbinary disk. To explain the newly-observed features, we performed a numerical simulation of gas orbits in a Roche potential tailored to the inferred properties of L1551 NE. The observed U-shaped dust features coincide with locations where gravitational torques from the central binary system are predicted to impart angular momentum to the circumbinary disk, producing shocks and hence density enhancements seen as a pair of spiral arms. The observed inward gas motion coincides with locations where angular momentum is predicted to be lowered by the gravitational torques. The good agreement between our observation and model indicates that gravitational torques from the binary stars constitute the primary driver for exchanging angular momentum so as to permit infall through the circumbinary disk of L1551 NE.Comment: 38 pages, 11 figures, accepted for publication in Ap

    Millimeter- and Submillimeter-Wave Observations of the OMC-2/3 Region. III. An Extensive Survey for Molecular Outflows

    Full text link
    Using the ASTE 10 m submillimeter telescope and the 1.4 m Infrared Survey Facility (IRSF), we performed an extensive outflow survey in the Orion Molecular Cloud -2 and -3 region. Our survey, which includes 41 potential star-forming sites, has been newly compiled using multi-wavelength data based on millimeter- and submillimeter-continuum observations as well as radio continuum observations. From the CO (3-2) observations performed with the ASTE 10 m telescope, we detected 14 CO molecular outflows, seven of which were newly identified. This higher detection rate, as compared to previous CO (1-0) results in the same region, suggests that CO (3-2) may be a better outflow tracer. Physical properties of these outflows and their possible driving sources were derived. Derived parameters were compared with those of CO outflows in low- and high-mass starforming regions. We show that the CO outflow momentum correlates with the bolometric luminosity of the driving source and with the envelope mass, regardless of the mass of the driving sources. In addition to these CO outflows, seven sources having NIR features suggestive of outflows were also identified.Comment: Accepted to Astrophysical Journal, high resolution images at http://www.asiaa.sinica.edu.tw/~satoko_t/papers/ms.ST.pd

    Millimeter- and Submillimeter-Wave Observations of the OMC-2/3 Region. II. Observational Evidence for Outflow-Triggered Star Formation in the OMC-2 FIR 3/4 Region

    Full text link
    We have carried out the observations of the OMC-2 FIR 3/4 region with the NMA and ASTE in the H13^{13}CO+^{+} (1--0), 12^{12}CO (3--2, 1--0), SiO (vv=0, JJ=2--1), CS (2--1), and CH3_3OH (JKJ_K=7K_K--6K_K) lines and in the 3.3 mm continuum emission. Our NMA observations in the H13^{13}CO+^{+} emission have revealed 0.07 pc-scale dense gas associated with FIR 4. The 12^{12}CO (3--2,1--0) emission shows high-velocity blue and red shifted components at the both north-east and south-west of FIR 3, suggesting a molecular outflow nearly along the plane of the sky driven by FIR 3. The SiO and the CH3_{3}OH emission are detected around the interface between the outflow and the dense gas. Furthermore, the 12^{12}CO (1--0) emission shows an L-shaped structure in the P-V diagram. These results imply presence of the shock due to the interaction between the molecular outflow driven by FIR 3 and the dense gas associated with FIR 4. Moreover, our high angular-resolution observations of FIR 4 in the 3.3 mm continuum emission have first found that FIR 4 consists of eleven dusty cores. The separation among these cores is on the same order of the Jeans length, suggesting that the fragmentation into these cores has been caused by the gravitational instability. The time scale of the fragmentation is similar to the time scale of the interaction between the molecular outflow and the dense gas. We suggest that the interaction between the molecular outflow from FIR 3 and the dense gas associated with FIR 4 triggered the fragmentation into these dusty cores, and hence the next generation the cluster formation.Comment: 13 pages, 9 figures. Accepted by Ap

    Molecular Evolution in Collapsing Prestellar Cores

    Get PDF
    We have investigated the evolution and distribution of molecules in collapsing prestellar cores via numerical chemical models, adopting the Larson-Penston solution and its delayed analogues to study collapse. Molecular abundances and distributions in a collapsing core are determined by the balance among the dynamical, chemical and adsorption time scales. When the central density n_H of a prestellar core with the Larson-Penston flow rises to 3 10^6 cm^{-3}, the CCS and CO column densities are calculated to show central holes of radius 7000 AU and 4000 AU, respectively, while the column density of N2H+ is centrally peaked. These predictions are consistent with observations of L1544. If the dynamical time scale of the core is larger than that of the Larson-Penston solution owing to magnetic fields, rotation, or turbulence, the column densities of CO and CCS are smaller, and their holes are larger than in the Larson-Penston core with the same central gas density. On the other hand, N2H+ and NH3 are more abundant in the more slowly collapsing core. Therefore, molecular distributions can probe the collapse time scale of prestellar cores. Deuterium fractionation has also been studied via numerical calculations. The deuterium fraction in molecules increases as a core evolves and molecular depletion onto grains proceeds. When the central density of the core is n_H=3 10^6 cm^{-3}, the ratio DCO+/HCO+ at the center is in the range 0.06-0.27, depending on the collapse time scale and adsorption energy; this range is in reasonable agreement with the observed value in L1544.Comment: 21 pages, 17 figure

    Imaging the Disk around TW Hydrae with the Submillimeter Array

    Get PDF
    We present ~2"-4" aperture synthesis observations of the circumstellar disk surrounding the nearby young star TW Hya in the CO J = 2-1 and J = 3-2 lines and associated dust continuum obtained with the partially completed Submillimeter Array. The extent and peak flux of the 230 and 345 GHz dust emission follow closely the predictions of the irradiated accretion disk model of Calvet et al. The resolved molecular line emission extends to a radius of at least 200 AU, the full extent of the disk visible in scattered light, and shows a clear pattern of Keplerian rotation. Comparison of the images with two-dimensional Monte Carlo models constrains the disk inclination angle to 7° ± 1°. The CO emission is optically thick in both lines, and the kinetic temperature in the line formation region is ~20 K. Substantial CO depletion, by an order of magnitude or more from canonical dark cloud values, is required to explain the characteristics of the line emission

    The CO Molecular Outflows of IRAS 16293-2422 Probed by the Submillimeter Array

    Full text link
    We have mapped the proto-binary source IRAS 16293-2422 in CO 2-1, 13CO 2-1, and CO 3-2 with the Submillimeter Array (SMA). The maps with resolution of 1".5-5" reveal a single small scale (~3000 AU) bipolar molecular outflow along the east-west direction. We found that the blueshifted emission of this small scale outflow mainly extends to the east and the redshifted emission to the west from the position of IRAS 16293A. A comparison with the morphology of the large scale outflows previously observed by single-dish telescopes at millimeter wavelengths suggests that the small scale outflow may be the inner part of the large scale (~15000 AU) E-W outflow. On the other hand, there is no clear counterpart of the large scale NE-SW outflow in our SMA maps. Comparing analytical models to the data suggests that the morphology and kinematics of the small scale outflow can be explained by a wide-angle wind with an inclination angle of ~30-40 degrees with respect to the plane of the sky. The high resolution CO maps show that there are two compact, bright spots in the blueshifted velocity range. An LVG analysis shows that the one located 1" to the east of source A is extremely dense, n(H_2)~10^7 cm^-3, and warm, T_kin >55 K. The other one located 1" southeast of source B has a higher temperature of T_kin >65 K but slightly lower density of n(H_2)~10^6 cm^-3. It is likely that these bright spots are associated with the hot core-like emission observed toward IRAS 16293. Since both two bright spots are blueshifted from the systemic velocity and are offset from the protostellar positions, they are likely formed by shocks.Comment: 27 pages, 8 figures, accepted for publication in ApJ, minor typos correcte
    • 

    corecore